This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 100
Filtering by

Clear all filters

151545-Thumbnail Image.png
Description
A Pairwise Comparison Matrix (PCM) is used to compute for relative priorities of criteria or alternatives and are integral components of widely applied decision making tools: the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network Process (ANP). However, a PCM suffers from several issues limiting its application

A Pairwise Comparison Matrix (PCM) is used to compute for relative priorities of criteria or alternatives and are integral components of widely applied decision making tools: the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network Process (ANP). However, a PCM suffers from several issues limiting its application to large-scale decision problems, specifically: (1) to the curse of dimensionality, that is, a large number of pairwise comparisons need to be elicited from a decision maker (DM), (2) inconsistent and (3) imprecise preferences maybe obtained due to the limited cognitive power of DMs. This dissertation proposes a PCM Framework for Large-Scale Decisions to address these limitations in three phases as follows. The first phase proposes a binary integer program (BIP) to intelligently decompose a PCM into several mutually exclusive subsets using interdependence scores. As a result, the number of pairwise comparisons is reduced and the consistency of the PCM is improved. Since the subsets are disjoint, the most independent pivot element is identified to connect all subsets. This is done to derive the global weights of the elements from the original PCM. The proposed BIP is applied to both AHP and ANP methodologies. However, it is noted that the optimal number of subsets is provided subjectively by the DM and hence is subject to biases and judgement errors. The second phase proposes a trade-off PCM decomposition methodology to decompose a PCM into a number of optimally identified subsets. A BIP is proposed to balance the: (1) time savings by reducing pairwise comparisons, the level of PCM inconsistency, and (2) the accuracy of the weights. The proposed methodology is applied to the AHP to demonstrate its advantages and is compared to established methodologies. In the third phase, a beta distribution is proposed to generalize a wide variety of imprecise pairwise comparison distributions via a method of moments methodology. A Non-Linear Programming model is then developed that calculates PCM element weights which maximizes the preferences of the DM as well as minimizes the inconsistency simultaneously. Comparison experiments are conducted using datasets collected from literature to validate the proposed methodology.
ContributorsJalao, Eugene Rex Lazaro (Author) / Shunk, Dan L. (Thesis advisor) / Wu, Teresa (Thesis advisor) / Askin, Ronald G. (Committee member) / Goul, Kenneth M (Committee member) / Arizona State University (Publisher)
Created2013
152414-Thumbnail Image.png
Description
Creative design lies at the intersection of novelty and technical feasibility. These objectives can be achieved through cycles of divergence (idea generation) and convergence (idea evaluation) in conceptual design. The focus of this thesis is on the latter aspect. The evaluation may involve any aspect of technical feasibility and may

Creative design lies at the intersection of novelty and technical feasibility. These objectives can be achieved through cycles of divergence (idea generation) and convergence (idea evaluation) in conceptual design. The focus of this thesis is on the latter aspect. The evaluation may involve any aspect of technical feasibility and may be desired at component, sub-system or full system level. Two issues that are considered in this work are: 1. Information about design ideas is incomplete, informal and sketchy 2. Designers often work at multiple levels; different aspects or subsystems may be at different levels of abstraction Thus, high fidelity analysis and simulation tools are not appropriate for this purpose. This thesis looks at the requirements for a simulation tool and how it could facilitate concept evaluation. The specific tasks reported in this thesis are: 1. The typical types of information available after an ideation session 2. The typical types of technical evaluations done in early stages 3. How to conduct low fidelity design evaluation given a well-defined feasibility question A computational tool for supporting idea evaluation was designed and implemented. It was assumed that the results of the ideation session are represented as a morphological chart and each entry is expressed as some combination of a sketch, text and references to physical effects and machine components. Approximately 110 physical effects were identified and represented in terms of algebraic equations, physical variables and a textual description. A common ontology of physical variables was created so that physical effects could be networked together when variables are shared. This allows users to synthesize complex behaviors from simple ones, without assuming any solution sequence. A library of 16 machine elements was also created and users were given instructions about incorporating them. To support quick analysis, differential equations are transformed to algebraic equations by replacing differential terms with steady state differences), only steady state behavior is considered and interval arithmetic was used for modeling. The tool implementation is done by MATLAB; and a number of case studies are also done to show how the tool works. textual description. A common ontology of physical variables was created so that physical effects could be networked together when variables are shared. This allows users to synthesize complex behaviors from simple ones, without assuming any solution sequence. A library of 15 machine elements was also created and users were given instructions about incorporating them. To support quick analysis, differential equations are transformed to algebraic equations by replacing differential terms with steady state differences), only steady state behavior is considered and interval arithmetic was used for modeling. The tool implementation is done by MATLAB; and a number of case studies are also done to show how the tool works.
ContributorsKhorshidi, Maryam (Author) / Shah, Jami J. (Thesis advisor) / Wu, Teresa (Committee member) / Gel, Esma (Committee member) / Arizona State University (Publisher)
Created2014
152510-Thumbnail Image.png
Description
Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.
ContributorsHruby, Peter (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
152842-Thumbnail Image.png
Description
Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is

Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these binder systems. Two main strategies for enhancing this sustainability are explored in this work: (i) the use of high volume limestone in combination with other alternative cementitious materials to decrease the portland cement quantity in concrete and (ii) the use of geopolymers as the binder phase in concrete. The first phase of the work investigates the use of fine limestone as cement replacement from the perspective of hydration, strength development, and pore structure. The nature of the potential synergistic benefit of limestone and alumina will be explored. The second phase will focus on the rheological characterization of these materials in the fresh state, as well as a more general investigation of the rheological characterization of suspensions. The results of this work indicate several key ideas. (i) There is a potential synergistic benefit for strength, hydration, and pore structure by using alumina and in portland limestone cements, (ii) the limestone in these systems is shown to react to some extent, and fine limestone is shown to accelerate hydration, (iii) rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, interparticle forces, surface area of the particles present, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended, and (iv) stress plateau method is proposed for the determination of rheological properties of concentrated suspensions, as it more accurately predicts apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions.
ContributorsVance, Kirk (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
153545-Thumbnail Image.png
Description
For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey

For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (µXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale µXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging.

In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering `zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs.

The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the volumetric quantification of parameters which are indicative of both electromigration tolerance of solders and the dominant mechanisms for atomic migration in response to current stressing. This work is aimed to further the community's understanding of failure-causing electromigration processes in industrially relevant material systems for microelectronic interconnect applications and to advance the capability of available characterization techniques for their interrogation.
ContributorsMertens, James Charles Edwin (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2015
152893-Thumbnail Image.png
Description
Network traffic analysis by means of Quality of Service (QoS) is a popular research and development area among researchers for a long time. It is becoming even more relevant recently due to ever increasing use of the Internet and other public and private communication networks. Fast and precise QoS analysis

Network traffic analysis by means of Quality of Service (QoS) is a popular research and development area among researchers for a long time. It is becoming even more relevant recently due to ever increasing use of the Internet and other public and private communication networks. Fast and precise QoS analysis is a vital task in mission-critical communication networks (MCCNs), where providing a certain level of QoS is essential for national security, safety or economic vitality. In this thesis, the details of all aspects of a comprehensive computational framework for QoS analysis in MCCNs are provided. There are three main QoS analysis tasks in MCCNs; QoS measurement, QoS visualization and QoS prediction. Definitions of these tasks are provided and for each of those, complete solutions are suggested either by referring to an existing work or providing novel methods.

A scalable and accurate passive one-way QoS measurement algorithm is proposed. It is shown that accurate QoS measurements are possible using network flow data.

Requirements of a good QoS visualization platform are listed. Implementations of the capabilities of a complete visualization platform are presented.

Steps of QoS prediction task in MCCNs are defined. The details of feature selection, class balancing through sampling and assessing classification algorithms for this task are outlined. Moreover, a novel tree based logistic regression method for knowledge discovery is introduced. Developed prediction framework is capable of making very accurate packet level QoS predictions and giving valuable insights to network administrators.
ContributorsSenturk, Muhammet Burhan (Author) / Li, Jing (Thesis advisor) / Baydogan, Mustafa G (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153109-Thumbnail Image.png
Description
This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the

This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the speed of propagation of the initial crack could differ from different test conditions and different solder materials. A quantitative analysis about the fatigue behavior of SAC lead-free solder under thermal preconditioning process is conducted. This thesis presents a method of making prediction of failure life of solder alloy by building a Weibull regression model. The failure life of solder on circuit board is assumed Weibull distributed. Different materials and test conditions could affect the distribution by changing the shape and scale parameters of Weibull distribution. The method is to model the regression of parameters with different test conditions as predictors based on Bayesian inference concepts. In the process of building regression models, prior distributions are generated according to the previous studies, and Markov Chain Monte Carlo (MCMC) is used under WinBUGS environment.
ContributorsXu, Xinyue (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153145-Thumbnail Image.png
Description
The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5

The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5 to 30 years old that results in systematic predictive capability that is absent today. The warranty period provided by the manufacturers typically range from 20 to 25 years for crystalline silicon modules. The end of lifetime (for example, the time-to-degrade by 20% from rated power) of PV modules is usually calculated using a simple linear extrapolation based on the annual field degradation rate (say, 0.8% drop in power output per year). It has been 26 years since systematic studies on solar PV module lifetime prediction were undertaken as part of the 11-year flat-plate solar array (FSA) project of the Jet Propulsion Laboratory (JPL) funded by DOE. Since then, PV modules have gone through significant changes in construction materials and design; making most of the field data obsolete, though the effect field stressors on the old designs/materials is valuable to be understood. Efforts have been made to adapt some of the techniques developed to the current technologies, but they are too often limited in scope and too reliant on empirical generalizations of previous results. Some systematic approaches have been proposed based on accelerated testing, but no or little experimental studies have followed. Consequently, the industry does not exactly know today how to test modules for a 20 - 30 years lifetime.

This research study focuses on the behavior of crystalline silicon PV module technology in the dry and hot climatic condition of Tempe/Phoenix, Arizona. A three-phase approach was developed: (1) A quantitative failure modes, effects, and criticality analysis (FMECA) was developed for prioritizing failure modes or mechanisms in a given environment; (2) A time-series approach was used to model environmental stress variables involved and prioritize their effect on the power output drop; and (3) A procedure for developing a prediction model was proposed for the climatic specific condition based on accelerated degradation testing
ContributorsKuitche, Joseph Mathurin (Author) / Pan, Rong (Thesis advisor) / Tamizhmani, Govindasamy (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153065-Thumbnail Image.png
Description
Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data

Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data imbalance and data noise have been treated separately in the data mining field. Yet, such approach ignores the mutual effects and as a result may lead to new problems. A desirable solution is to tackle these two issues jointly. Noting the complementary nature of generative and discriminative models, this research proposes a unified model fusion based framework to handle the imbalanced classification with noisy dataset.

The phase I study focuses on the imbalanced classification problem. A generative classifier, Gaussian Mixture Model (GMM) is studied which can learn the distribution of the imbalance data to improve the discrimination power on imbalanced classes. By fusing this knowledge into cost SVM (cSVM), a CSG method is proposed. Experimental results show the effectiveness of CSG in dealing with imbalanced classification problems.

The phase II study expands the research scope to include the noisy dataset into the imbalanced classification problem. A model fusion based framework, K Nearest Gaussian (KNG) is proposed. KNG employs a generative modeling method, GMM, to model the training data as Gaussian mixtures and form adjustable confidence regions which are less sensitive to data imbalance and noise. Motivated by the K-nearest neighbor algorithm, the neighboring Gaussians are used to classify the testing instances. Experimental results show KNG method greatly outperforms traditional classification methods in dealing with imbalanced classification problems with noisy dataset.

The phase III study addresses the issues of feature selection and parameter tuning of KNG algorithm. To further improve the performance of KNG algorithm, a Particle Swarm Optimization based method (PSO-KNG) is proposed. PSO-KNG formulates model parameters and data features into the same particle vector and thus can search the best feature and parameter combination jointly. The experimental results show that PSO can greatly improve the performance of KNG with better accuracy and much lower computational cost.
ContributorsHe, Miao (Author) / Wu, Teresa (Thesis advisor) / Li, Jing (Committee member) / Silva, Alvin (Committee member) / Borror, Connie (Committee member) / Arizona State University (Publisher)
Created2014
153188-Thumbnail Image.png
Description
Conceptual design stage plays a critical role in product development. However, few systematic methods and tools exist to support conceptual design. The long term aim of this project is to develop a tool for facilitating holistic ideation for conceptual design. This research is a continuation of past efforts in ASU

Conceptual design stage plays a critical role in product development. However, few systematic methods and tools exist to support conceptual design. The long term aim of this project is to develop a tool for facilitating holistic ideation for conceptual design. This research is a continuation of past efforts in ASU Design Automation Lab. In past research, an interactive software test bed (Holistic Ideation Tool - version 1) was developed to explore logical ideation methods. Ideation states were identified and ideation strategies were developed to overcome common ideation blocks. The next version (version 2) of the holistic ideation tool added Cascading Evolutionary Morphological Charts (CEMC) framework and intuitive ideation strategies (reframing, restructuring, random connection, and forced connection).

Despite these remarkable contributions, there exist shortcomings in the previous versions (version 1 and version 2) of the holistic ideation tool. First, there is a need to add new ideation methods to the holistic ideation tool. Second, the organizational framework provided by previous versions needs to be improved, and a holistic approach needs to be devised, instead of separate logical or intuitive approaches. Therefore, the main objective of this thesis is to make the improvements and to resolve technical issues that are involved in their implementation.

Towards this objective, a new web based holistic ideation tool (version 3) has been created. The new tool adds and integrates Knowledge Bases of Mechanisms and Components Off-The-Shelf (COTS) into logical ideation methods. Additionally, an improved CEMC framework has been devised for organizing ideas efficiently. Furthermore, the usability of the tool has been improved by designing and implementing a new graphical user interface (GUI) which is more user friendly. It is hoped that these new features will lead to a platform for the designers to not only generate creative ideas but also effectively organize and store them in the conceptual design stage. By placing it on the web for public use, the Testbed has the potential to be used for research on the ideation process by effectively collecting large amounts of data from designers.
ContributorsNarsale, Sumit Sunil (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014