This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 108
Filtering by

Clear all filters

152239-Thumbnail Image.png
Description
Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the flow through the entire porous medium should be considered choked as the gas pressure gradient at the point of choking becomes singular. This thesis investigates the choking condition for compressible gas flow in a single microscopic pore. Quasi-one-dimensional analysis and axisymmetric numerical simulations of compressible gas flow in a pore scale varicose tube with a number of bumps are carried out, and the local Mach number and pressure along the tube are computed for the flow near choking condition. The effects of tube length, inlet-to-outlet pressure ratio, the number of bumps and the amplitude of the bumps on the choking condition are obtained. These critical values provide guidance for avoiding the choking condition in practice.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Wang, Liping (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151485-Thumbnail Image.png
Description
Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, power outputs and Reynolds numbers calculated for the turbine for various combinations of working fluids and inlet nozzles. The results indicate the turbine is capable of achieving a turbine efficiency of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These efficiencies are promising considering the numerous losses still present in the current design. Calculation of the Reynolds number provided some capability to determine the flow behavior and how that behavior impacts the performance and efficiency of the Tesla turbine. It was determined that turbulence in the flow is essential to achieving high power outputs and high efficiency. Although the efficiency, after peaking, begins to slightly taper off as the flow becomes increasingly turbulent, the power output maintains a steady linear increase.
ContributorsPeshlakai, Aaron (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2012
152510-Thumbnail Image.png
Description
Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.
ContributorsHruby, Peter (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
152842-Thumbnail Image.png
Description
Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is

Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these binder systems. Two main strategies for enhancing this sustainability are explored in this work: (i) the use of high volume limestone in combination with other alternative cementitious materials to decrease the portland cement quantity in concrete and (ii) the use of geopolymers as the binder phase in concrete. The first phase of the work investigates the use of fine limestone as cement replacement from the perspective of hydration, strength development, and pore structure. The nature of the potential synergistic benefit of limestone and alumina will be explored. The second phase will focus on the rheological characterization of these materials in the fresh state, as well as a more general investigation of the rheological characterization of suspensions. The results of this work indicate several key ideas. (i) There is a potential synergistic benefit for strength, hydration, and pore structure by using alumina and in portland limestone cements, (ii) the limestone in these systems is shown to react to some extent, and fine limestone is shown to accelerate hydration, (iii) rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, interparticle forces, surface area of the particles present, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended, and (iv) stress plateau method is proposed for the determination of rheological properties of concentrated suspensions, as it more accurately predicts apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions.
ContributorsVance, Kirk (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
153545-Thumbnail Image.png
Description
For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey

For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (µXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale µXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging.

In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering `zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs.

The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the volumetric quantification of parameters which are indicative of both electromigration tolerance of solders and the dominant mechanisms for atomic migration in response to current stressing. This work is aimed to further the community's understanding of failure-causing electromigration processes in industrially relevant material systems for microelectronic interconnect applications and to advance the capability of available characterization techniques for their interrogation.
ContributorsMertens, James Charles Edwin (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2015
153244-Thumbnail Image.png
Description
Nanostructured materials show signicant enhancement in the thermoelectric g-

ure of merit (zT) due to quantum connement eects. Improving the eciency of

thermoelectric devices allows for the development of better, more economical waste

heat recovery systems. Such systems may be used as bottoming or co-generation

cycles in conjunction with conventional power cycles to recover

Nanostructured materials show signicant enhancement in the thermoelectric g-

ure of merit (zT) due to quantum connement eects. Improving the eciency of

thermoelectric devices allows for the development of better, more economical waste

heat recovery systems. Such systems may be used as bottoming or co-generation

cycles in conjunction with conventional power cycles to recover some of the wasted

heat. Thermal conductivity measurement systems are an important part of the char-

acterization processes of thermoelectric materials. These systems must possess the

capability of accurately measuring the thermal conductivity of both bulk and thin-lm

samples at dierent ambient temperatures.

This paper discusses the construction, validation, and improvement of a thermal

conductivity measurement platform based on the 3-Omega technique. Room temperature

measurements of thermal conductivity done on control samples with known properties

such as undoped bulk silicon (Si), bulk gallium arsenide (GaAs), and silicon dioxide

(SiO2) thin lms yielded 150 W=m􀀀K, 50 W=m􀀀K, and 1:46 W=m􀀀K respectively.

These quantities were all within 8% of literature values. In addition, the thermal

conductivity of bulk SiO2 was measured as a function of temperature in a Helium-

4 cryostat from 75K to 250K. The results showed good agreement with literature

values that all fell within the error range of each measurement. The uncertainty in

the measurements ranged from 19% at 75K to 30% at 250K. Finally, the system

was used to measure the room temperature thermal conductivity of a nanocomposite

composed of cadmium selenide, CdSe, nanocrystals in an indium selenide, In2Se3,

matrix as a function of the concentration of In2Se3. The observed trend was in

qualitative agreement with the expected behavior.

i
ContributorsJaber, Abbas (Author) / Wang, Robert (Thesis advisor) / Wang, Liping (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2014
152439-Thumbnail Image.png
Description
As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change

As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change (anisotropic for the initial lithiation of crystal silicon), plastic flow or softening of material dependent on composition, electrochemically driven phase transformation between solid states, anisotropic or isotropic migration of atomic sharp interface, and mass diffusion of lithium atoms. Motivated by the promising prospect of the application and underlying interesting physics, mechanics coupled with multi-physics of silicon electrodes in lithium ion batteries is studied in this dissertation. For silicon electrodes with large size, diffusion controlled kinetics is assumed, and the coupled large deformation and mass transportation is studied. For crystal silicon with small size, interface controlled kinetics is assumed, and anisotropic interface reaction is studied, with a geometry design principle proposed. As a preliminary experimental validation, enhanced lithiation and fracture behavior of silicon pillars via atomic layer coatings and geometry design is studied, with results supporting the geometry design principle we proposed based on our simulations. Through the work documented here, a consistent description and understanding of the behavior of silicon electrode is given at continuum level and some insights for the future development of the silicon electrode are provided.
ContributorsAn, Yonghao (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Phelan, Patrick (Committee member) / Wang, Yinming (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
149945-Thumbnail Image.png
Description
Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative

Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 538oC in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite hardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties. Due to the complex non-uniform stresses and strains associated with conventional nanoindentation, micropillar compression has become an attractive method to probe local mechanical behavior while limiting strain gradients and contributions from surrounding features. In this study, micropillars of ferrite and martensite were fabricated by focused ion beam (FIB) milling of dual phase precipitation hardened powder metallurgy (PM) stainless steels. Compression testing was conducted using a nanoindenter equipped with a flat punch indenter. The stress-strain curves of the individual microconstituents were calculated from the load-displacement curves less the extraneous displacements of the system. Using a rule of mixtures approach in conjunction with porosity corrections, the mechanical properties of ferrite and martensite were combined for comparison to tensile tests of the bulk material, and reasonable agreement was found for the ultimate tensile strength. Micropillar compression experiments of both as sintered and thermally aged material allowed for investigation of the effect of thermal aging.
ContributorsStewart, Jennifer (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiang, Hanqing (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
150697-Thumbnail Image.png
Description
The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or

The mechanical behavior of Pb-free solder alloys is important, since they must maintain mechanical integrity under thermomechanical fatigue, creep, and mechanical shock conditions. Mechanical shock, in particular, has become an increasing concern in the electronics industry, since electronic packages can be subjected to mechanical shock by mishandling during manufacture or by accidental dropping. In this study, the mechanical shock behavior of Sn and Sn-Ag-Cu alloys was systematically analyzed over the strain rate range 10-3 - 30 s-1 in bulk samples, and over 10-3 - 12 s-1 on the single solder joint level. More importantly, the influences of solder microstructure and intermetallic compounds (IMC) on mechanical shock resistance were quantified. A thorough microstructural characterization of Sn-rich alloys was conducted using synchrotron x-ray computed tomography. The three-dimensional morphology and distribution of contiguous phases and precipitates was analyzed. A multiscale approach was utilized to characterize Sn-rich phases on the microscale with x-ray tomography and focused ion beam tomography to characterize nanoscale precipitates. A high strain rate servohydraulic test system was developed in conjunction with a modified tensile specimen geometry and a high speed camera for quantifying deformation. The effect of microstructure and applied strain rate on the local strain and strain rate distributions were quantified using digital image correlation. Necking behavior was analyzed using a novel mirror fixture, and the triaxial stresses associated with necking were corrected using a self-consistent method to obtain the true stress-true strain constitutive behavior. Fracture mechanisms were quantified as a function of strain rate. Finally, the relationship between solder microstructure and intermetallic compound layer thickness with the mechanical shock resistance of Sn-3.8Ag-0.7Cu solder joints was characterized. It was found that at low strain rates the dynamic solder joint strength was controlled by the solder microstructure, while at high strain rates it was controlled by the IMC layer. The influences of solder microstructure and IMC layer thickness were then isolated using extended reflow or isothermal aging treatments. It was found that at large IMC layer thicknesses the trend described above does not hold true. The fracture mechanisms associated with the dynamic solder joint strength regimes were analyzed.
ContributorsYazzie, Kyle (Author) / Chawla, Nikhilesh (Thesis advisor) / Sane, Sandeep (Committee member) / Jiang, Hanqing (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
150754-Thumbnail Image.png
Description
This report will review the mechanical and microstructural properties of the refractory element rhenium (Re) deposited using Laser Additive Manufacturing (LAM). With useable structural strength over 2200 °C, existing applications up to 2760 °C, very high strength, ductility and chemical resistance, interest in Re is understandable. This study includes data

This report will review the mechanical and microstructural properties of the refractory element rhenium (Re) deposited using Laser Additive Manufacturing (LAM). With useable structural strength over 2200 °C, existing applications up to 2760 °C, very high strength, ductility and chemical resistance, interest in Re is understandable. This study includes data about tensile properties including tensile data up to 1925 °C, fracture modes, fatigue and microstructure including deformation systems and potential applications of that information. The bulk mechanical test data will be correlated with nanoindentation and crystallographic examination. LAM properties are compared to the existing properties found in the literature for other manufacturing processes. The literature indicates that Re has three significant slip systems but also twins as part of its deformation mechanisms. While it follows the hcp metal characteristics for deformation, it has interesting and valuable extremes such as high work hardening, potentially high strength, excellent wear resistance and superior elevated temperature strength. These characteristics are discussed in detail.
ContributorsAdams, Robbie (Author) / Chawla, Nikhilesh (Thesis advisor) / Adams, James (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012