This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 99
Filtering by

Clear all filters

152510-Thumbnail Image.png
Description
Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.
ContributorsHruby, Peter (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
152800-Thumbnail Image.png
Description
To uncover the neural correlates to go-directed behavior, single unit action potentials are considered fundamental computing units and have been examined by different analytical methodologies under a broad set of hypotheses. Using a behaving rat performing a directional choice learning task, we aim to study changes in rat's cortical neural

To uncover the neural correlates to go-directed behavior, single unit action potentials are considered fundamental computing units and have been examined by different analytical methodologies under a broad set of hypotheses. Using a behaving rat performing a directional choice learning task, we aim to study changes in rat's cortical neural patterns while he improved his task performance accuracy from chance to 80% or higher. Specifically, simultaneous multi-channel single unit neural recordings from the rat's agranular medial (AGm) and Agranular lateral (AGl) cortices were analyzed using joint peristimulus time histogram (JPSTHs), which effectively unveils firing coincidences in neural action potentials. My results based on data from six rats revealed that coincidences of pair-wise neural action potentials are higher when rats were performing the task than they were not at the learning stage, and this trend abated after the rats learned the task. Another finding is that the coincidences at the learning stage are stronger than that when the rats learned the task especially when they were performing the task. Therefore, this coincidence measure is the highest when the rats were performing the task at the learning stage. This may suggest that neural coincidences play a role in the coordination and communication among populations of neurons engaged in a purposeful act. Additionally, attention and working memory may have contributed to the modulation of neural coincidences during the designed task.
ContributorsCheng, Bing (Author) / Si, Jennie (Thesis advisor) / Chae, Junseok (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
152922-Thumbnail Image.png
Description
Photovoltaic (PV) systems are affected by converter losses, partial shading and other mismatches in the panels. This dissertation introduces a sub-panel maximum power point tracking (MPPT) architecture together with an integrated CMOS current sensor circuit on a chip to reduce the mismatch effects, losses and increase the efficiency of the

Photovoltaic (PV) systems are affected by converter losses, partial shading and other mismatches in the panels. This dissertation introduces a sub-panel maximum power point tracking (MPPT) architecture together with an integrated CMOS current sensor circuit on a chip to reduce the mismatch effects, losses and increase the efficiency of the PV system. The sub-panel MPPT increases the efficiency of the PV during the shading and replaces the bypass diodes in the panels with an integrated MPPT and DC-DC regulator. For the integrated MPPT and regulator, the research developed an integrated standard CMOS low power and high common mode range Current-to-Digital Converter (IDC) circuit and its application for DC-DC regulator and MPPT. The proposed charge based CMOS switched-capacitor circuit directly digitizes the output current of the DC-DC regulator without an analog-to-digital converter (ADC) and the need for high-voltage process technology. Compared to the resistor based current-sensing methods that requires current-to-voltage circuit, gain block and ADC, the proposed CMOS IDC is a low-power efficient integrated circuit that achieves high resolution, lower complexity, and lower power consumption. The IDC circuit is fabricated on a 0.7 um CMOS process, occupies 2mm x 2mm and consumes less than 27mW. The IDC circuit has been tested and used for boost DC-DC regulator and MPPT for photo-voltaic system. The DC-DC converter has an efficiency of 95%. The sub-module level power optimization improves the output power of a shaded panel by up to 20%, compared to panel MPPT with bypass diodes.
ContributorsMarti-Arbona, Edgar (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
152842-Thumbnail Image.png
Description
Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is

Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these binder systems. Two main strategies for enhancing this sustainability are explored in this work: (i) the use of high volume limestone in combination with other alternative cementitious materials to decrease the portland cement quantity in concrete and (ii) the use of geopolymers as the binder phase in concrete. The first phase of the work investigates the use of fine limestone as cement replacement from the perspective of hydration, strength development, and pore structure. The nature of the potential synergistic benefit of limestone and alumina will be explored. The second phase will focus on the rheological characterization of these materials in the fresh state, as well as a more general investigation of the rheological characterization of suspensions. The results of this work indicate several key ideas. (i) There is a potential synergistic benefit for strength, hydration, and pore structure by using alumina and in portland limestone cements, (ii) the limestone in these systems is shown to react to some extent, and fine limestone is shown to accelerate hydration, (iii) rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, interparticle forces, surface area of the particles present, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended, and (iv) stress plateau method is proposed for the determination of rheological properties of concentrated suspensions, as it more accurately predicts apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions.
ContributorsVance, Kirk (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
153490-Thumbnail Image.png
Description
This work describes the development of automated flows to generate pad rings, mixed signal power grids, and mega cells in a multi-project test chip. There were three major design flows that were created to create the test chip. The first was the pad ring which was used as the staring

This work describes the development of automated flows to generate pad rings, mixed signal power grids, and mega cells in a multi-project test chip. There were three major design flows that were created to create the test chip. The first was the pad ring which was used as the staring block for creating the test chip. This flow put all of the signals for the chip in the order that was wanted along the outside of the die along with creation of the power ring that is used to supply the chip with a robust power source.

The second flow that was created was used to put together a flash block that is based off of a XILIX XCFXXP. This flow was somewhat similar to how the pad ring flow worked except that optimizations and a clock tree was added into the flow. There was a couple of design redoes due to timing and orientation constraints.

Finally, the last flow that was created was the top level flow which is where all of the components are combined together to create a finished test chip ready for fabrication. The main components that were used were the finished flash block, HERMES, test structures, and a clock instance along with the pad ring flow for the creation of the pad ring and power ring.

Also discussed is some work that was done on a previous multi-project test chip. The work that was done was the creation of power gaters that were used like switches to turn the power on and off for some flash modules. To control the power gaters the functionality change of some pad drivers was done so that they output a higher voltage than what is seen in the core of the chip.
ContributorsLieb, Christopher (Author) / Clark, Lawrence (Thesis advisor) / Holbert, Keith E. (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2015
153545-Thumbnail Image.png
Description
For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey

For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (µXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale µXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging.

In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering `zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs.

The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the volumetric quantification of parameters which are indicative of both electromigration tolerance of solders and the dominant mechanisms for atomic migration in response to current stressing. This work is aimed to further the community's understanding of failure-causing electromigration processes in industrially relevant material systems for microelectronic interconnect applications and to advance the capability of available characterization techniques for their interrogation.
ContributorsMertens, James Charles Edwin (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2015
153039-Thumbnail Image.png
Description
Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented

Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented by designing a programmable digital controller. Despite variations in L and C values, the target dynamic response can be achieved by computing and programming the filter coefficients for a particular L and C. Besides, digital controllers have higher immunity to environmental changes such as temperature and aging of components. The second drawback of SCs is their poor efficiency during low load conditions if operated in Pulse Width Modulation (PWM) mode. However, if operated in Pulse Frequency Modulation (PFM) mode, better efficiency numbers can be achieved. A mostly-digital way of detecting PFM mode is implemented. Besides, a slow serial interface to program the chip, and a high speed serial interface to characterize mixed signal blocks as well as to ship data in or out for debug purposes are designed. The chip is taped out in 0.18µm IBM's radiation hardened CMOS process technology. A test board is built with the chip, external power FETs and driver IC. At the time of this writing, PWM operation, PFM detection, transitions between PWM and PFM, and both serial interfaces are validated on the test board.
ContributorsMumma Reddy, Abhiram (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ogras, Umit Y. (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
153288-Thumbnail Image.png
Description
Register file (RF) memory is important in low power system on chip (SOC) due to its

inherent low voltage stability. Moreover, designs increasingly use compiled instead of custom memory blocks, which frequently employ static, rather than pre-charged dynamic RFs. In this work, the various RFs designed for a microprocessor cache and

Register file (RF) memory is important in low power system on chip (SOC) due to its

inherent low voltage stability. Moreover, designs increasingly use compiled instead of custom memory blocks, which frequently employ static, rather than pre-charged dynamic RFs. In this work, the various RFs designed for a microprocessor cache and register files are discussed. Comparison between static and dynamic RF power dissipation and timing characteristics is also presented. The relative timing and power advantages of the designs are shown to be dependent on the memory aspect ratio, i.e. array width and height.
ContributorsVashishtha, Vinay (Author) / Clark, Lawrence T. (Thesis advisor) / Seo, Jae-Sun (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2014
152439-Thumbnail Image.png
Description
As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change

As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted a great deal of attention in recent years. Advanced characterization techniques and atomic simulations helped to depict that the lithiation/delithiation of silicon electrode involves processes including large volume change (anisotropic for the initial lithiation of crystal silicon), plastic flow or softening of material dependent on composition, electrochemically driven phase transformation between solid states, anisotropic or isotropic migration of atomic sharp interface, and mass diffusion of lithium atoms. Motivated by the promising prospect of the application and underlying interesting physics, mechanics coupled with multi-physics of silicon electrodes in lithium ion batteries is studied in this dissertation. For silicon electrodes with large size, diffusion controlled kinetics is assumed, and the coupled large deformation and mass transportation is studied. For crystal silicon with small size, interface controlled kinetics is assumed, and anisotropic interface reaction is studied, with a geometry design principle proposed. As a preliminary experimental validation, enhanced lithiation and fracture behavior of silicon pillars via atomic layer coatings and geometry design is studied, with results supporting the geometry design principle we proposed based on our simulations. Through the work documented here, a consistent description and understanding of the behavior of silicon electrode is given at continuum level and some insights for the future development of the silicon electrode are provided.
ContributorsAn, Yonghao (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Phelan, Patrick (Committee member) / Wang, Yinming (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2014
149945-Thumbnail Image.png
Description
Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative

Increasing demand for high strength powder metallurgy (PM) steels has resulted in the development of dual phase PM steels. In this work, the effects of thermal aging on the microstructure and mechanical behavior of dual phase precipitation hardened powder metallurgy (PM) stainless steels of varying ferrite-martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 538oC in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite hardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties. Due to the complex non-uniform stresses and strains associated with conventional nanoindentation, micropillar compression has become an attractive method to probe local mechanical behavior while limiting strain gradients and contributions from surrounding features. In this study, micropillars of ferrite and martensite were fabricated by focused ion beam (FIB) milling of dual phase precipitation hardened powder metallurgy (PM) stainless steels. Compression testing was conducted using a nanoindenter equipped with a flat punch indenter. The stress-strain curves of the individual microconstituents were calculated from the load-displacement curves less the extraneous displacements of the system. Using a rule of mixtures approach in conjunction with porosity corrections, the mechanical properties of ferrite and martensite were combined for comparison to tensile tests of the bulk material, and reasonable agreement was found for the ultimate tensile strength. Micropillar compression experiments of both as sintered and thermally aged material allowed for investigation of the effect of thermal aging.
ContributorsStewart, Jennifer (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiang, Hanqing (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011