This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 11 - 20 of 98
Filtering by

Clear all filters

151414-Thumbnail Image.png
Description
The hypothalamus pituitary adrenal (HPA) axis and the human genome are important components of the biological etiology of externalizing disorders. By studying the associations between specific genetic variants, diurnal cortisol, and externalizing symptoms we can begin to unpack this complex etiology. It was hypothesized that genetic variants from the corticotropine

The hypothalamus pituitary adrenal (HPA) axis and the human genome are important components of the biological etiology of externalizing disorders. By studying the associations between specific genetic variants, diurnal cortisol, and externalizing symptoms we can begin to unpack this complex etiology. It was hypothesized that genetic variants from the corticotropine releasing hormone receptor 1 (CRHR1), FK506 binding protein 51 (FKBP5), catechol-O-methyl transferase (COMT), and dopamine transporter (DAT1) genes and diurnal cortisol intercepts and slopes would separately predict externalizing symptoms. It was also hypothesized that genetic variants would moderate the association between cortisol and externalizing. Participants were 800 twins (51% boys), 88.5% Caucasian, M=7.93 years (SD=0.87) participating in the Wisconsin Twin Project. Hierarchical Linear Modeling (HLM) was used to separate the variance associated with state and trait cortisol measured across three consecutive days and trait cortisol measures were used. There were no main effects of genes on externalizing symptoms. The evening cortisol intercept, the morning cortisol slope and the evening cortisol slope predicted externalizing, but only in boys, such that boys with higher cortisol and flatter slopes across the day also had more externalizing symptoms. The morning cortisol intercept and CRHR1 rs242924 interacted to predict externalizing in both boys and girls, with GG carriers significantly higher compared to TT carriers at one standard deviation below the mean of morning cortisol. For boys only there was a significant interaction between the DAT1 variable number tandem repeat (VNTR) and the afternoon slope and a significant slope for 9/9 carriers and 9/10 carriers such that when the slope was more steep, boys carrying a nine had fewer externalizing symptoms but when the slope was less steep, they had more. Results confirm a link between diurnal trait cortisol and externalizing in boys, as well as moderation of that association by genetic polymorphisms. This is the first study to empirically examine this association and should encourage further research on the biological etiology of externalizing disorder symptoms.
ContributorsSwann, Gregory (Author) / Lemery-Chalfant, Kathryn (Thesis advisor) / Chassin, Laurie (Committee member) / Doane-Sampey, Leah (Committee member) / Arizona State University (Publisher)
Created2012
151435-Thumbnail Image.png
Description
The main objective of this study is to develop an innovative system in the form of a sandwich panel type composite with textile reinforced skins and aerated concrete core. Existing theoretical concepts along with extensive experimental investigations were utilized to characterize the behavior of cement based systems in the presence

The main objective of this study is to develop an innovative system in the form of a sandwich panel type composite with textile reinforced skins and aerated concrete core. Existing theoretical concepts along with extensive experimental investigations were utilized to characterize the behavior of cement based systems in the presence of individual fibers and textile yarns. Part of this thesis is based on a material model developed here in Arizona State University to simulate experimental flexural response and back calculate tensile response. This concept is based on a constitutive law consisting of a tri-linear tension model with residual strength and a bilinear elastic perfectly plastic compression stress strain model. This parametric model was used to characterize Textile Reinforced Concrete (TRC) with aramid, carbon, alkali resistant glass, polypropylene TRC and hybrid systems of aramid and polypropylene. The same material model was also used to characterize long term durability issues with glass fiber reinforced concrete (GFRC). Historical data associated with effect of temperature dependency in aging of GFRC composites were used. An experimental study was conducted to understand the behavior of aerated concrete systems under high stain rate impact loading. Test setup was modeled on a free fall drop of an instrumented hammer using three point bending configuration. Two types of aerated concrete: autoclaved aerated concrete (AAC) and polymeric fiber-reinforced aerated concrete (FRAC) were tested and compared in terms of their impact behavior. The effect of impact energy on the mechanical properties was investigated for various drop heights and different specimen sizes. Both materials showed similar flexural load carrying capacity under impact, however, flexural toughness of fiber-reinforced aerated concrete was proved to be several degrees higher in magnitude than that provided by plain autoclaved aerated concrete. Effect of specimen size and drop height on the impact response of AAC and FRAC was studied and discussed. Results obtained were compared to the performance of sandwich beams with AR glass textile skins with aerated concrete core under similar impact conditions. After this extensive study it was concluded that this type of sandwich composite could be effectively used in low cost sustainable infrastructure projects.
ContributorsDey, Vikram (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2012
151437-Thumbnail Image.png
Description
Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a

Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a finite element-based framework that is used to study the thermal performance of structural precast concrete wall elements with and without a layer of phase change material. The simulation platform developed can be implemented for a wide variety of input parameters. In this study, two different locations in the continental United States, representing different ambient temperature conditions (corresponding to hot, cold and typical days of the year) are studied. Two different types of concrete - normal weight and lightweight, different PCM types, gypsum wallboard's with varying PCM percentages and different PCM layer thicknesses are also considered with an aim of understanding the energy flow across the wall member. Effect of changing PCM location and prolonged thermal loading are also studied. The temperature of the inside face of the wall and energy flow through the inside face of the wall, which determines the indoor HVAC energy consumption are used as the defining parameters. An ad-hoc optimization scheme is also implemented where the PCM thickness is fixed but its location and properties are varied. Numerical results show that energy savings are possible with small changes in baseline values, facilitating appropriate material design for desired characteristics.
ContributorsHembade, Lavannya Babanrao (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
152580-Thumbnail Image.png
Description
Tall buildings are spreading across the globe at an ever-increasing rate (www.ctbuh.org). The global number of buildings 200m or more in height has risen from 286 to 602 in the last decade alone. The increasing complexity of building architecture poses unique challenges in the structural design of modern tall buildings.

Tall buildings are spreading across the globe at an ever-increasing rate (www.ctbuh.org). The global number of buildings 200m or more in height has risen from 286 to 602 in the last decade alone. The increasing complexity of building architecture poses unique challenges in the structural design of modern tall buildings. Hence, innovative structural systems need to be evaluated to create an economical design that satisfies multiple design criteria. Design using traditional trial-and-error approach can be extremely time-consuming and the resultant design uneconomical. Thus, there is a need for an efficient numerical optimization tool that can explore and generate several design alternatives in the preliminary design phase which can lead to a more desirable final design. In this study, we present the details of a tool that can be very useful in preliminary design optimization - finite element modeling, design optimization, translating design code requirements into components of the FE and design optimization models, and pre-and post-processing to verify the veracity of the model. Emphasis is placed on development and deployment of various FE models (static, modal and dynamic analyses; linear, beam and plate/shell finite elements), design optimization problem formulation (sizing, shape, topology and material selection optimization) and numerical optimization tools (gradient-based and evolutionary optimization methods) [Rajan, 2001]. The design optimization results of full scale three dimensional buildings subject to multiple design criteria including stress, serviceability and dynamic response are discussed.
ContributorsSirigiri, Mamatha (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2014
152649-Thumbnail Image.png
Description
The demand for portland cement concrete is expected to increase over time. There is a need to develop a more sustainable cementitious systems in order to reduce the negative environmental impacts associated with ordinary portland cement (OPC) production. An attempt is made to investigate sustainable binder solutions through the use

The demand for portland cement concrete is expected to increase over time. There is a need to develop a more sustainable cementitious systems in order to reduce the negative environmental impacts associated with ordinary portland cement (OPC) production. An attempt is made to investigate sustainable binder solutions through the use of alternative cementitious materials at high levels of volume replacement. Limestone, an abundant material is used as a filler in low water-to-powder concretes where a substantial fraction of the portland cement remains unhydrated. At high volume OPC replacement, 20% and 35%, the combination of limestone and an alumina source has been shown to improve mechanical and durability performance. At 20% OPC replacement levels the migration coefficient which is an indication of chloride penetration in concrete is lower than the OPC control mixture at 28 and 56 days of hydration. The use of limestone with a similar particle size distribution to that of the OPC is used in each of these blended systems. A 20% binary limestone blend provide similar strength to an OPC mortar at all ages and comparable transport properties to that of the OPC concrete. Fly ash and metakaolin are the two alumina sources for the ternary blended mixes with concrete. The metakaolin shows the highest increase in the amount of hydration products formed out of all the mixes, including calcium-silicate-hydrate and carboaluminate phases in combination with limestone powder. At both levels of replacement the metakaolin blends show a substantially lower migration coefficient which is contributed to the smaller pore sizes found in the metakaolin blends. The fracture response of these systems show that at all replacement levels the ductility of the systems increase indicated by the large critical crack tip opening displacement. The fracture toughness is the highest for the blend containing metakaolin indicative of the smaller pore sizes allowing more dissipation of energy. An attempt is made to relate all mechanical and durability parameters to the reaction products and pore-structure developing at later ages.
ContributorsAguayo, Matthew (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2014
152773-Thumbnail Image.png
Description
The main objective of this study is to numerically investigate: (i) the ionic transport, especially chloride ion penetration into cementitious materials under imposed electric fields, and (ii) moisture transport through cracked concretes as a function of the crack geometry. Numerical methods were implemented to simulate the ionic transport process, based

The main objective of this study is to numerically investigate: (i) the ionic transport, especially chloride ion penetration into cementitious materials under imposed electric fields, and (ii) moisture transport through cracked concretes as a function of the crack geometry. Numerical methods were implemented to simulate the ionic transport process, based on coupling the Nernst-Planck equation and Poisson's equation to account for transport dominated by electromigration. This mathematical model was also modified to account for the chloride binding mechanism (physical and chemical trapping of chlorides by the cement hydrates) and the concentration dependence of the diffusion coefficient of each ion in the transport process. To validate the numerical model, experimental data from a companion work was used in this study. The non-steady state migration test, which is one of the common accelerated chloride ion transport test, is numerically simulated. The simulation provides a linear relationship between ionic concentration and ionic flux, which indicates that the diffusion part is negligible under a strong external voltage environment. The numerical models along with adjustments for the concentration-dependent diffusion coefficients, a pore structure factor (from electrical measurements) and chloride binding considerations are found to be successful in predicting the chloride penetration depth into plain and modified concretes under imposed electrical potentials. Moisture transport through cracked concrete was examined in the second part of this thesis. To better understand the crack's influence on the permeability, modified Louis' equation was chosen to relate the permeability with crack characteristics. 3D concrete crack models were developed using a MATLAB program with distinct crack tortuosities, roughnesses and sizes. As a comparison, Navier-Stokes equation and the Lattice Boltzmann method were also applied on the 3D model of the cracked concrete to evaluate their permeability. The methodology developed here is expected to be useful in understanding the influence of cracking on moisture transport, and when properly coupled with an ionic transport model that will be further developed, helps comprehensively understand the coupling effects of moisture and ionic transport on deterioration in concrete structures.
ContributorsYang, Pu (Author) / Neithalath, Narayanan (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2014
152951-Thumbnail Image.png
Description
Although research has documented robust prospective relationships between externalizing symptomatology and subsequent binge drinking among adolescents, the extent to which internalizing symptoms increase risk for drinking remains controversial. In particular, the role of anxiety as a predictor of binge drinking remains unclear. Recent evidence suggests that one possible reason for

Although research has documented robust prospective relationships between externalizing symptomatology and subsequent binge drinking among adolescents, the extent to which internalizing symptoms increase risk for drinking remains controversial. In particular, the role of anxiety as a predictor of binge drinking remains unclear. Recent evidence suggests that one possible reason for these mixed findings is that separate dimensions of anxiety may differentially confer risk for alcohol use. The present study tested two dimensions of anxiety - worry and physiological anxiety -- as predictors of binge drinking in a longitudinal study of juvenile delinquents. Overall, results indicate that worry and physiological anxiety showed differential relations with drinking behavior. In general, worry was protective against alcohol use, whereas physiological anxiety conferred risk for binge drinking, but both effects were conditional on levels of offending. Implications for future research examining the role of anxiety in predicting drinking behavior among youth are discussed.
ContributorsNichter, Brandon (Author) / Chassin, Laurie (Thesis advisor) / Barrera, Manuel (Committee member) / Presson, Clark (Committee member) / Arizona State University (Publisher)
Created2014
152932-Thumbnail Image.png
Description
The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and

The main objective of this study is to investigate drying properties and plastic shrinkage cracking resistance of fresh cement-based pastes reinforced with fibers and textiles. Naturally occurring mineral wollastonite has been studied independently as well as in combination with AR-glass textile. A series of blended mixes with Portland cement and wollastonite nano-fibers were developed and tested under low vacuum conditions to simulate severe evaporation conditions and expedite the drying process causing plastic shrinkage cracks. Cumulative moisture loss, evaporation rates, and diffusivity were analyzed by means of a 2-stage diffusion simulation approach, developed previously in Arizona State University. Effect of fiber-matrix interaction on the transport properties of the composite were evaluated using the existing approach. Morphology of the cracked surface was investigated by the means of image analysis wherein length, width, area and density of the cracks were computed to help characterize the contribution of fiber and textile in the cracking phenomenon. Additionally, correlation between cumulative moisture loss and crack propagation was attempted. The testing procedures and associated analytical methods were applied to evaluate effectiveness of four wollastonite fiber sizes and also a hybrid reinforcement system with alkali-resistant glass (ARG) textile in improving shrinkage cracking related parameters. Furthermore, the experimental and analytical approach was extended to magnified version of the existing shrinkage testing set-up to study the size effect of these composites when subjected to matching drying conditions. Different restraining mechanisms were used to study the simulation of the cracking phenomena on a larger specimen. Paste and mortar formulations were developed to investigate size effect on shrinkage resistance of cementitious composites.
ContributorsKachala, Robert (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2014
152842-Thumbnail Image.png
Description
Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is

Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these binder systems. Two main strategies for enhancing this sustainability are explored in this work: (i) the use of high volume limestone in combination with other alternative cementitious materials to decrease the portland cement quantity in concrete and (ii) the use of geopolymers as the binder phase in concrete. The first phase of the work investigates the use of fine limestone as cement replacement from the perspective of hydration, strength development, and pore structure. The nature of the potential synergistic benefit of limestone and alumina will be explored. The second phase will focus on the rheological characterization of these materials in the fresh state, as well as a more general investigation of the rheological characterization of suspensions. The results of this work indicate several key ideas. (i) There is a potential synergistic benefit for strength, hydration, and pore structure by using alumina and in portland limestone cements, (ii) the limestone in these systems is shown to react to some extent, and fine limestone is shown to accelerate hydration, (iii) rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, interparticle forces, surface area of the particles present, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended, and (iv) stress plateau method is proposed for the determination of rheological properties of concentrated suspensions, as it more accurately predicts apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions.
ContributorsVance, Kirk (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
152620-Thumbnail Image.png
Description
The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in

The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.
ContributorsAswani, Karan (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2014