This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 78
Filtering by

Clear all filters

150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
150383-Thumbnail Image.png
Description

This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it

This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it has been recognized that the development of pores water pressure contributes to the degradation of the resilient modulus of unbound materials. In the last decades several efforts have been directed to model the effect of air and water pore pressures upon resilient modulus. However, none of them consider dynamic variations in pressures but rather are based on equilibrium values corresponding to initial conditions. The measurement of this response is challenging especially in soils under unsaturated conditions. Models are needed not only to overcome testing limitations but also to understand the dynamic behavior of internal pore pressures that under critical conditions may even lead to failure. A testing program was conducted to characterize the pore water pressure response of a low plasticity fine clayey sand subjected to dynamic loading. The bulk stress, initial matric suction and dwelling time parameters were controlled and their effects were analyzed. The results were used to attempt models capable of predicting the accumulated excess pore pressure at any given time during the traffic loading and unloading phases. Important findings regarding the influence of the controlled variables challenge common beliefs. The accumulated excess pore water pressure was found to be higher for unsaturated soil specimens than for saturated soil specimens. The maximum pore water pressure always increased when the high bulk stress level was applied. Higher dwelling time was found to decelerate the accumulation of pore water pressure. In addition, it was found that the higher the dwelling time, the lower the maximum pore water pressure. It was concluded that upon further research, the proposed models may become a powerful tool not only to overcome testing limitations but also to enhance current design practices and to prevent soil failure due to excessive development of pore water pressure.

ContributorsCary, Carlos (Author) / Zapata, Claudia E (Thesis advisor) / Wiczak, Matthew W (Thesis advisor) / Kaloush, Kamil (Committee member) / Sandra, Houston (Committee member) / Arizona State University (Publisher)
Created2011
150156-Thumbnail Image.png
Description
Early-age cracks in fresh concrete occur mainly due to high rate of surface evaporation and restraint offered by the contracting solid phase. Available test methods that simulate severe drying conditions, however, were not originally designed to focus on evaporation and transport characteristics of the liquid-gas phases in a hydrating cementitious

Early-age cracks in fresh concrete occur mainly due to high rate of surface evaporation and restraint offered by the contracting solid phase. Available test methods that simulate severe drying conditions, however, were not originally designed to focus on evaporation and transport characteristics of the liquid-gas phases in a hydrating cementitious microstructure. Therefore, these tests lack accurate measurement of the drying rate and data interpretation based on the principles of transport properties is limited. A vacuum-based test method capable of simulating early-age cracks in 2-D cement paste is developed which continuously monitors the weight loss and changes to the surface characteristics. 2-D crack evolution is documented using time-lapse photography. Effects of sample size, w/c ratio, initial curing and fiber content are studied. In the subsequent analysis, the cement paste phase is considered as a porous medium and moisture transport is described based on surface mass transfer and internal moisture transport characteristics. Results indicate that drying occurs in two stages: constant drying rate period (stage I), followed by a falling drying rate period (stage II). Vapor diffusion in stage I and unsaturated flow within porous medium in stage II determine the overall rate of evaporation. The mass loss results are analyzed using diffusion-based models. Results show that moisture diffusivity in stage I is higher than its value in stage II by more than one order of magnitude. The drying model is used in conjunction with a shrinkage model to predict the development of capillary pressures. Similar approach is implemented in drying restrained ring specimens to predict 1-D crack width development. An analytical approach relates diffusion, shrinkage, creep, tensile and fracture properties to interpret the experimental data. Evaporation potential is introduced based on the boundary layer concept, mass transfer, and a driving force consisting of the concentration gradient. Effect of wind velocity is reflected on Reynolds number which affects the boundary layer on sample surface. This parameter along with Schmidt and Sherwood numbers are used for prediction of mass transfer coefficient. Concentration gradient is shown to be a strong function of temperature and relative humidity and used to predict the evaporation potential. Results of modeling efforts are compared with a variety of test results reported in the literature. Diffusivity data and results of 1-D and 2-D image analyses indicate significant effects of fibers on controlling early-age cracks. Presented models are capable of predicting evaporation rates and moisture flow through hydrating cement-based materials during early-age drying and shrinkage conditions.
ContributorsBakhshi, Mehdi (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Zapata, Claudia E. (Committee member) / Arizona State University (Publisher)
Created2011
152247-Thumbnail Image.png
Description
Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR sensor paradigm for the purpose of small molecule detection. The detection limits of two orthogonal components of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the target molecule mass limitation of conventional SPR measurement. A simple device for high-speed microfluidic delivery of liquid samples to a sensor surface is presented to address the temporal limitations of conventional SPR measurement. The time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement. Charge-based detection of small molecules is demonstrated by plasmonic-based electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a dextran-modified sensor surface. The SPR response to an applied ac potential is a function of the surface charge density. This optical signal is comprised of a dc and an ac component, and is measured with high spatial resolution. The amplitude and phase of local surface impedance is provided by the ac component. The phase signal of the small molecules is a function of their charge status, which is manipulated by the pH of a solution. This technique is used to detect and distinguish small molecules based on their charge status, thereby circumventing the mass limitation (~100 Da) of conventional SPR measurement.
ContributorsMacGriff, Christopher Assiff (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / LaBaer, Joshua (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2013
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
151676-Thumbnail Image.png
Description
Laboratory assessment of crack resistance and propagation in asphalt concrete is a difficult task that challenges researchers and engineers. Several fracture mechanics based laboratory tests currently exist; however, these tests and subsequent analysis methods rely on elastic behavior assumptions and do not consider the time-dependent nature of asphalt concrete. The

Laboratory assessment of crack resistance and propagation in asphalt concrete is a difficult task that challenges researchers and engineers. Several fracture mechanics based laboratory tests currently exist; however, these tests and subsequent analysis methods rely on elastic behavior assumptions and do not consider the time-dependent nature of asphalt concrete. The C* Line Integral test has shown promise to capture crack resistance and propagation within asphalt concrete. In addition, the fracture mechanics based C* parameter considers the time-dependent creep behavior of the materials. However, previous research was limited and lacked standardized test procedure and detailed data analysis methods were not fully presented. This dissertation describes the development and refinement of the C* Fracture Test (CFT) based on concepts of the C* line integral test. The CFT is a promising test to assess crack propagation and fracture resistance especially in modified mixtures. A detailed CFT test protocol was developed based on a laboratory study of different specimen sizes and test conditions. CFT numerical simulations agreed with laboratory results and indicated that the maximum horizontal tensile stress (Mode I) occurs at the crack tip but diminishes at longer crack lengths when shear stress (Mode II) becomes present. Using CFT test results and the principles of time-temperature superposition, a crack growth rate master curve was successfully developed to describe crack growth over a range of test temperatures. This master curve can be applied to pavement design and analysis to describe crack propagation as a function of traffic conditions and pavement temperatures. Several plant mixtures were subjected to the CFT and results showed differences in resistance to crack propagation, especially when comparing an asphalt rubber mixture to a conventional one. Results indicated that crack propagation is ideally captured within a given range of dynamic modulus values. Crack growth rates and C* prediction models were successfully developed for all unmodified mixtures in the CFT database. These models can be used to predict creep crack propagation and the C* parameter when laboratory testing is not feasible. Finally, a conceptual approach to incorporate crack growth rate and the C* parameter into pavement design and analysis was presented.
ContributorsStempihar, Jeffrey (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
150678-Thumbnail Image.png
Description

One of the main requirements of designing perpetual pavements is to determine the endurance limit of Hot Mix Asphalt (HMA). The purpose of this study was to validate the endurance limit for HMA using laboratory beam fatigue tests. A mathematical procedure was developed to determine the endurance limit of HMA

One of the main requirements of designing perpetual pavements is to determine the endurance limit of Hot Mix Asphalt (HMA). The purpose of this study was to validate the endurance limit for HMA using laboratory beam fatigue tests. A mathematical procedure was developed to determine the endurance limit of HMA due to healing that occurs during the rest periods between loading cycles. Relating healing to endurance limit makes this procedure unique compared to previous research projects that investigated these concepts separately. An extensive laboratory testing program, including 468 beam tests, was conducted according to AASHTO T321-03 test procedure. Six factors that affect the fatigue response of HMA were evaluated: binder type, binder content, air voids, test temperature, rest period and applied strain. The endurance limit was determined when no accumulated damage occurred indicating complete healing. Based on the test results, a first generation predictive model was developed to relate stiffness ratio to material properties. A second generation stiffness ratio model was also developed by replacing four factors (binder type, binder content, air voids, and temperature) with the initial stiffness of the mixture, which is a basic material property. The model also accounts for the nonlinear effects of the rest period and the applied strain on the healing and endurance limit. A third generation model was then developed by incorporation the number of loading cycles at different locations along the fatigue degradation curve for each test in order to account for the nonlinearity between stiffness ratio and loading cycles. In addition to predicting endurance limit, the model has the ability to predict the number of cycles to failure at any rest period and stiffness combination. The model was used to predict fatigue relationship curves for tests with rest period and determining the K1, K2, and K3 fatigue cracking coefficients. The three generation models predicted close endurance limit values ranging from 22 to 204 micro strains. After developing the third generation stiffness ratio model, the predicted endurance limit values were integrated in the strain-Nf fatigue relationships as a step toward incorporating the endurance limit in the MEPDG software. The results of this study can be used to design perpetual pavements that can sustain a large number of loads if traffic volumes and vehicle weights are controlled.

ContributorsSouliman, Mena (Author) / Mamlouk, Michael S. (Thesis advisor) / Witczak, Matthew W. (Thesis advisor) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2012
150506-Thumbnail Image.png
Description
The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to be accounted to accurately and comprehensively model the urban system.

The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to be accounted to accurately and comprehensively model the urban system. Location choices affect household activity-travel behavior, household activity-travel behavior affects network level of service (performance), and network level of service, in turn, affects land use and activity-travel behavior. The development of conceptual designs and operational frameworks that represent such complex inter-relationships in a consistent fashion across behavioral units, geographical entities, and temporal scales has proven to be a formidable challenge. In this research, an integrated microsimulation modeling framework called SimTRAVEL (Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land) that integrates the component model systems in a behaviorally consistent fashion, is presented. The model system is designed such that the activity-travel behavior model and the dynamic traffic assignment model are able to communicate with one another along continuous time with a view to simulate emergent activity-travel patterns in response to dynamically changing network conditions. The dissertation describes the operational framework, presents the modeling methodologies, and offers an extensive discussion on the advantages that such a framework may provide for analyzing the impacts of severe network disruptions on activity-travel choices. A prototype of the model system is developed and implemented for a portion of the Greater Phoenix metropolitan area in Arizona to demonstrate the capabilities of the model system.
ContributorsKonduri, Karthik Charan (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Kuby, Michael (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2012
151072-Thumbnail Image.png
Description

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently known as DARWin-ME. This study was conducted as part of the National Cooperative Highway Research Program (NCHRP) Project 9-44A to develop a framework and mathematical methodology to determine the fatigue endurance limit using the uniaxial fatigue test. In this procedure, the endurance limit is defined as the allowable tensile strains at which a balance takes place between the fatigue damage during loading, and the healing during the rest periods between loading pulses. The viscoelastic continuum damage model was used to isolate time dependent damage and healing in hot mix asphalt from that due to fatigue. This study also included the development of a uniaxial fatigue test method and the associated data acquisition computer programs to conduct the test with and without rest period. Five factors that affect the fatigue and healing behavior of asphalt mixtures were evaluated: asphalt content, air voids, temperature, rest period and tensile strain. Based on the test results, two Pseudo Stiffness Ratio (PSR) regression models were developed. In the first model, the PSR was a function of the five factors and the number of loading cycles. In the second model, air voids, asphalt content, and temperature were replaced by the initial stiffness of the mix. In both models, the endurance limit was defined when PSR is equal to 1.0 (net damage is equal to zero). The results of the first model were compared to the results of a stiffness ratio model developed based on a parallel study using beam fatigue test (part of the same NCHRP 9-44A). The endurance limit values determined from uniaxial and beam fatigue tests showed very good correlation. A methodology was described on how to incorporate the second PSR model into fatigue analysis and damage using the DARWin-ME software. This would provide an effective and efficient methodology to design perpetual flexible pavements.

ContributorsZeiada, Waleed (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew W. (Thesis advisor) / Zapata, Claudia (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2012
168823-Thumbnail Image.png
Description
Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the

Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the last decade there has been considerable interest in using HDAC inhibitors (HDACi) for the treatment of malignant primary brain tumors. However, to date most HDACi tested in clinical trials have failed to provide significant therapeutic benefit to patients with GBM. This is because current HDACi have poor or unknown pharmacokinetic profiles, lack selectivity towards the different HDAC isoforms, and have narrow therapeutic windows. Isoform selectivity for HDACi is important given that broad inhibition of all HDACs results in widespread toxicity across different organs. Moreover, the functional roles of individual HDAC isoforms in GBM are still not well understood. Here, I demonstrate that HDAC1 expression increases with brain tumor grade and is correlated with decreased survival in GBM. I find that HDAC1 is the essential HDAC isoform in glioma stem cells and its loss is not compensated for by its paralogue HDAC2 or other members of the HDAC family. Loss of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner and leads to significant suppression of tumor growth in vivo. While no HDAC isoform-selective inhibitors are currently available, the second-generation HDACi quisinostat harbors high specificity for HDAC1. I show that quisinostat exhibits potent growth inhibition in multiple patient-derived glioma stem cells. Using a pharmacokinetics- and pharmacodynamics-driven approach, I demonstrate that quisinostat is a brain-penetrant molecule that reduces tumor burden in flank and orthotopic models of GBM and significantly extends survival both alone and in combination with radiotherapy. The work presented in this thesis thereby unveils the non-redundant functions of HDAC1 in therapy- resistant glioma stem cells and identifies a brain-penetrant HDACi with higher selectivity towards HDAC1 as a potent radiosensitizer in preclinical models of GBM. Together, these results provide a rationale for developing quisinostat as a potential adjuvant therapy for the treatment of GBM.
ContributorsLo Cascio, Costanza (Author) / LaBaer, Joshua (Thesis advisor) / Mehta, Shwetal (Committee member) / Mirzadeh, Zaman (Committee member) / Mangone, Marco (Committee member) / Paek, Andrew (Committee member) / Arizona State University (Publisher)
Created2022