This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

152113-Thumbnail Image.png
Description
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus

The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived the order of the unicast throughput, as the number of nodes in the network goes to infinity. In our work, we characterize the scaling of the multicast capacity of large-scale MANETs under a delay constraint D. We first derive an upper bound on the multicast throughput, and then propose a lower bound on the multicast capacity by proposing a joint coding-scheduling algorithm that achieves a throughput within logarithmic factor of the upper bound. We then study the power control problem in ad-hoc wireless networks. We propose a distributed power control algorithm based on the Gibbs sampler, and prove that the algorithm is throughput optimal. Finally, we consider the scheduling algorithm in collocated wireless networks with flow-level dynamics. Specifically, we study the delay performance of workload-based scheduling algorithm with SRPT as a tie-breaking rule. We demonstrate the superior flow-level delay performance of the proposed algorithm using simulations.
ContributorsZhou, Shan (Author) / Ying, Lei (Thesis advisor) / Zhang, Yanchao (Committee member) / Zhang, Junshan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2013
152874-Thumbnail Image.png
Description
The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password on small smartphone screen is error-prone and not convenient. In

The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password on small smartphone screen is error-prone and not convenient. In the meantime, there are emerging demands for new types of authentication. Proximity authentication is an example, which is not needed for computers but quite necessary for smart devices. These challenges motivate me to study and develop novel authentication mechanisms specific for smart devices.

In this dissertation, I am interested in the special authentication demands of smart devices and about to satisfy the demands. First, I study how the features of smart devices affect user identity authentications. For identity authentication domain, I aim to design a continuous, forge-resistant authentication mechanism that does not interrupt user-device interactions. I propose a mechanism that authenticates user identity based on the user's finger movement patterns. Next, I study a smart-device-specific authentication, proximity authentication, which authenticates whether two devices are in close proximity. For prox- imity authentication domain, I aim to design a user-friendly authentication mechanism that can defend against relay attacks. In addition, I restrict the authenticated distance to the scale of near field, i.e., a few centimeters. My first design utilizes a user's coherent two-finger movement on smart device screen to restrict the distance. To achieve a fully-automated system, I explore acoustic communications and propose a novel near field authentication system.
ContributorsLi, Lingjun (Author) / Xue, Guoliang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Ye, Jieping (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2014
153909-Thumbnail Image.png
Description
Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many

Cloud computing is known as a new and powerful computing paradigm. This new generation of network computing model delivers both software and hardware as on-demand resources and various services over the Internet. However, the security concerns prevent users from adopting the cloud-based solutions to fulfill the IT requirement for many business critical computing. Due to the resource-sharing and multi-tenant nature of cloud-based solutions, cloud security is especially the most concern in the Infrastructure as a Service (IaaS). It has been attracting a lot of research and development effort in the past few years.

Virtualization is the main technology of cloud computing to enable multi-tenancy.

Computing power, storage, and network are all virtualizable to be shared in an IaaS system. This important technology makes abstract infrastructure and resources available to users as isolated virtual machines (VMs) and virtual networks (VNs). However, it also increases vulnerabilities and possible attack surfaces in the system, since all users in a cloud share these resources with others or even the attackers. The promising protection mechanism is required to ensure strong isolation, mediated sharing, and secure communications between VMs. Technologies for detecting anomalous traffic and protecting normal traffic in VNs are also needed. Therefore, how to secure and protect the private traffic in VNs and how to prevent the malicious traffic from shared resources are major security research challenges in a cloud system.

This dissertation proposes four novel frameworks to address challenges mentioned above. The first work is a new multi-phase distributed vulnerability, measurement, and countermeasure selection mechanism based on the attack graph analytical model. The second work is a hybrid intrusion detection and prevention system to protect VN and VM using virtual machines introspection (VMI) and software defined networking (SDN) technologies. The third work further improves the previous works by introducing a VM profiler and VM Security Index (VSI) to keep track the security status of each VM and suggest the optimal countermeasure to mitigate potential threats. The final work is a SDN-based proactive defense mechanism for a cloud system using a reconfiguration model and moving target defense approaches to actively and dynamically change the virtual network configuration of a cloud system.
ContributorsChung, Chun-Jen (Author) / Huang, Dijiang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Xue, Guoliang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
154873-Thumbnail Image.png
Description
Wireless communication technologies have been playing an important role in modern society. Due to its inherent mobility property, wireless networks are more vulnerable to passive attacks than traditional wired networks. Anonymity, as an important issue in mobile network environment, serves as the first topic that leads to all the research

Wireless communication technologies have been playing an important role in modern society. Due to its inherent mobility property, wireless networks are more vulnerable to passive attacks than traditional wired networks. Anonymity, as an important issue in mobile network environment, serves as the first topic that leads to all the research work presented in this manuscript. Specifically, anonymity issue in Mobile Ad hoc Networks (MANETs) is discussed with details as the first section of research.



To thoroughly study on this topic, the presented work approaches it from an attacker's perspective. Under a perfect scenario, all the traffic in a targeted MANET exhibits the communication relations to a passive attacker. However, localization errors pose a significant influence on the accuracy of the derived communication patterns. To handle such issue, a new scheme is proposed to generate super nodes, which represent the activities of user groups in the target MANET. This scheme also helps reduce the scale of monitoring work by grouping users based on their behaviors.



The first part of work on anonymity in MANET leads to the thought on its major cause. The link-based communication pattern is a key contributor to the success of the traffic analysis attack. A natural way to circumvent such issue is to use link-less approaches. Information Centric Networking (ICN) is a typical instance of such kind. Its communication pattern is able to overcome the anonymity issue with MANET. However, it also comes with its own shortcomings. One of them is access control enforcement. To tackle this issue, a new naming scheme for contents transmitted in ICN networks is presented. This scheme is based on a new Attribute-Based Encryption (ABE) algorithm. It enforces access control in ICN with minimum requirements on additional network components.



Following the research work on ABE, an important function, delegation, exhibits a potential security issue. In traditional ABE schemes, Ciphertext-Policy ABE (CP-ABE), a user is able to generate a subset of authentic attribute key components for other users using delegation function. This capability is not monitored or controlled by the trusted third party (TTP) in the cryptosystem. A direct threat caused from this issue is that any user may intentionally or unintentionally lower the standards for attribute assignments. Unauthorized users/attackers may be able to obtain their desired attributes through a delegation party instead of directly from the TTP. As the third part of work presented in this manuscript, a three-level delegation restriction architecture is proposed. Furthermore, a delegation restriction scheme following this architecture is also presented. This scheme allows the TTP to have full control on the delegation function of all its direct users.
ContributorsLi, Bing (Author) / Huang, Dijiang (Thesis advisor) / Xue, Guoliang (Committee member) / Ahn, Gail-Joon (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2016
189245-Thumbnail Image.png
Description
Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the widespread deployment of Internet-of-Things (IoT) devices in smart homes. However, the spate of cyber attacks exploiting the vulnerabilities and weak security management of smart home IoT devices have highlighted the urgency and challenges of designing efficient mechanisms

Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the widespread deployment of Internet-of-Things (IoT) devices in smart homes. However, the spate of cyber attacks exploiting the vulnerabilities and weak security management of smart home IoT devices have highlighted the urgency and challenges of designing efficient mechanisms for detecting, analyzing, and mitigating security threats towards them. In this dissertation, I seek to address the security and privacy issues of smart home IoT devices from the perspectives of traffic measurement, pattern recognition, and security applications. I first propose an efficient multidimensional smart home network traffic measurement framework, which enables me to deeply understand the smart home IoT ecosystem and detect various vulnerabilities and flaws. I further design intelligent schemes to efficiently extract security-related IoT device event and user activity patterns from the encrypted smart home network traffic. Based on the knowledge of how smart home operates, different systems for securing smart home networks are proposed and implemented, including abnormal network traffic detection across multiple IoT networking protocol layers, smart home safety monitoring with extracted spatial information about IoT device events, and system-level IoT vulnerability analysis and network hardening.
ContributorsWan, Yinxin (Author) / Xue, Guoliang (Thesis advisor) / Xu, Kuai (Thesis advisor) / Yang, Yezhou (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2023
187520-Thumbnail Image.png
Description
Modern data center networks require efficient and scalable security analysis approaches that can analyze the relationship between the vulnerabilities. Utilizing the Attack Representation Methods (ARMs) and Attack Graphs (AGs) enables the security administrator to understand the cloud network’s current security situation at the low-level. However, the AG approach suffers from

Modern data center networks require efficient and scalable security analysis approaches that can analyze the relationship between the vulnerabilities. Utilizing the Attack Representation Methods (ARMs) and Attack Graphs (AGs) enables the security administrator to understand the cloud network’s current security situation at the low-level. However, the AG approach suffers from scalability challenges. It relies on the connectivity between the services and the vulnerabilities associated with the services to allow the system administrator to realize its security state. In addition, the security policies created by the administrator can have conflicts among them, which is often detected in the data plane of the Software Defined Networking (SDN) system. Such conflicts can cause security breaches and increase the flow rules processing delay. This dissertation addresses these challenges with novel solutions to tackle the scalability issue of Attack Graphs and detect security policy conflictsin the application plane before they are transmitted into the data plane for final installation. Specifically, it introduces a segmentation-based scalable security state (S3) framework for the cloud network. This framework utilizes the well-known divide-and-conquer approach to divide the large network region into smaller, manageable segments. It follows a well-known segmentation approach derived from the K-means clustering algorithm to partition the system into segments based on the similarity between the services. Furthermore, the dissertation presents unified intent rules that abstract the network administration from the underlying network controller’s format. It develops a networking service solution to use a bounded formal model for network service compliance checking that significantly reduces the complexity of flow rule conflict checking at the data plane level. The solution can be expended from a single SDN domain to multiple SDN domains and hybrid networks by applying network service function chaining (SFC) for inter-domain policy management.
ContributorsSabur, Abdulhakim (Author) / Zhao, Ming (Thesis advisor) / Xue, Guoliang (Committee member) / Davulcu, Hasan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2023
153986-Thumbnail Image.png
Description
The recent years have witnessed a rapid development of mobile devices and smart devices. As more and more people are getting involved in the online environment, privacy issues are becoming increasingly important. People’s privacy in the digital world is much easier to leak than in the real world, because every

The recent years have witnessed a rapid development of mobile devices and smart devices. As more and more people are getting involved in the online environment, privacy issues are becoming increasingly important. People’s privacy in the digital world is much easier to leak than in the real world, because every action people take online would leave a trail of information which could be recorded, collected and used by malicious attackers. Besides, service providers might collect users’ information and analyze them, which also leads to a privacy breach. Therefore, preserving people’s privacy is very important in the online environment.

In this dissertation, I study the problems of preserving people’s identity privacy and loca- tion privacy in the online environment. Specifically, I study four topics: identity privacy in online social networks (OSNs), identity privacy in anonymous message submission, lo- cation privacy in location based social networks (LBSNs), and location privacy in location based reminders. In the first topic, I propose a system which can hide users’ identity and data from untrusted storage site where the OSN provider puts users’ data. I also design a fine grained access control mechanism which prevents unauthorized users from accessing the data. Based on the secret sharing scheme, I construct a shuffle protocol that disconnects the relationship between members’ identities and their submitted messages in the topic of identity privacy in anonymous message submission. The message is encrypted on the mem- ber side and decrypted on the message collector side. The collector eventually gets all of the messages but does not know who submitted which message. In the third topic, I pro- pose a framework that hides users’ check-in information from the LBSN. Considering the limited computation resources on smart devices, I propose a delegatable pseudo random function to outsource computations to the much more powerful server while preserving privacy. I also implement efficient revocations. In the topic of location privacy in location based reminders, I propose a system to hide users’ reminder locations from an untrusted cloud server. I propose a cross based approach and an improved bar based approach, re- spectively, to represent a reminder area. The reminder location and reminder message are encrypted before uploading to the cloud server, which then can determine whether the dis- tance between the user’s current location and the reminder location is within the reminder distance without knowing anything about the user’s location information and the content of the reminder message.
ContributorsZhao, Xinxin (Author) / Xue, Guoliang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Huang, Dijiang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
157577-Thumbnail Image.png
Description
Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the limited resources it can employ in various application scenarios, including computing power, network resource, dedicated hardware, etc. The situation is further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT applications, such as delay, bandwidth, security, reliability, and more. This mismatch in resources and demands has greatly hindered the deployment and utilization of IoT services in many resource-intense and QoS-sensitive scenarios like autonomous driving and virtual reality.

I believe that the resource issue in IoT will persist in the near future due to technological, economic and environmental factors. In this dissertation, I seek to address this issue by means of smart resource allocation. I propose mathematical models to formally describe various resource constraints and application scenarios in IoT. Based on these, I design smart resource allocation algorithms and protocols to maximize the system performance in face of resource restrictions. Different aspects are tackled, including networking, security, and economics of the entire IoT ecosystem. For different problems, different algorithmic solutions are devised, including optimal algorithms, provable approximation algorithms, and distributed protocols. The solutions are validated with rigorous theoretical analysis and/or extensive simulation experiments.
ContributorsYu, Ruozhou, Ph.D (Author) / Xue, Guoliang (Thesis advisor) / Huang, Dijiang (Committee member) / Sen, Arunabha (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2019