This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155149-Thumbnail Image.png
Description
Cyber systems, including IoT (Internet of Things), are increasingly being used ubiquitously to vastly improve the efficiency and reduce the cost of critical application areas, such as finance, transportation, defense, and healthcare. Over the past two decades, computing efficiency and hardware cost have dramatically been improved. These improvements have made

Cyber systems, including IoT (Internet of Things), are increasingly being used ubiquitously to vastly improve the efficiency and reduce the cost of critical application areas, such as finance, transportation, defense, and healthcare. Over the past two decades, computing efficiency and hardware cost have dramatically been improved. These improvements have made cyber systems omnipotent, and control many aspects of human lives. Emerging trends in successful cyber system breaches have shown increasing sophistication in attacks and that attackers are no longer limited by resources, including human and computing power. Most existing cyber defense systems for IoT systems have two major issues: (1) they do not incorporate human user behavior(s) and preferences in their approaches, and (2) they do not continuously learn from dynamic environment and effectively adapt to thwart sophisticated cyber-attacks. Consequently, the security solutions generated may not be usable or implementable by the user(s) thereby drastically reducing the effectiveness of these security solutions.

In order to address these major issues, a comprehensive approach to securing ubiquitous smart devices in IoT environment by incorporating probabilistic human user behavioral inputs is presented. The approach will include techniques to (1) protect the controller device(s) [smart phone or tablet] by continuously learning and authenticating the legitimate user based on the touch screen finger gestures in the background, without requiring users’ to provide their finger gesture inputs intentionally for training purposes, and (2) efficiently configure IoT devices through controller device(s), in conformance with the probabilistic human user behavior(s) and preferences, to effectively adapt IoT devices to the changing environment. The effectiveness of the approach will be demonstrated with experiments that are based on collected user behavioral data and simulations.
ContributorsBuduru, Arun Balaji (Author) / Yau, Sik-Sang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Davulcu, Hasan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2016
187520-Thumbnail Image.png
Description
Modern data center networks require efficient and scalable security analysis approaches that can analyze the relationship between the vulnerabilities. Utilizing the Attack Representation Methods (ARMs) and Attack Graphs (AGs) enables the security administrator to understand the cloud network’s current security situation at the low-level. However, the AG approach suffers from

Modern data center networks require efficient and scalable security analysis approaches that can analyze the relationship between the vulnerabilities. Utilizing the Attack Representation Methods (ARMs) and Attack Graphs (AGs) enables the security administrator to understand the cloud network’s current security situation at the low-level. However, the AG approach suffers from scalability challenges. It relies on the connectivity between the services and the vulnerabilities associated with the services to allow the system administrator to realize its security state. In addition, the security policies created by the administrator can have conflicts among them, which is often detected in the data plane of the Software Defined Networking (SDN) system. Such conflicts can cause security breaches and increase the flow rules processing delay. This dissertation addresses these challenges with novel solutions to tackle the scalability issue of Attack Graphs and detect security policy conflictsin the application plane before they are transmitted into the data plane for final installation. Specifically, it introduces a segmentation-based scalable security state (S3) framework for the cloud network. This framework utilizes the well-known divide-and-conquer approach to divide the large network region into smaller, manageable segments. It follows a well-known segmentation approach derived from the K-means clustering algorithm to partition the system into segments based on the similarity between the services. Furthermore, the dissertation presents unified intent rules that abstract the network administration from the underlying network controller’s format. It develops a networking service solution to use a bounded formal model for network service compliance checking that significantly reduces the complexity of flow rule conflict checking at the data plane level. The solution can be expended from a single SDN domain to multiple SDN domains and hybrid networks by applying network service function chaining (SFC) for inter-domain policy management.
ContributorsSabur, Abdulhakim (Author) / Zhao, Ming (Thesis advisor) / Xue, Guoliang (Committee member) / Davulcu, Hasan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2023