This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

187469-Thumbnail Image.png
Description
Assembly lines are low-cost production systems that manufacture similar finished units in large quantities. Manufacturers utilize mixed-model assembly lines to produce customized items that are not identical but share some general features in response to consumer needs. To maintain efficiency, the aim is to find the best feasible option to

Assembly lines are low-cost production systems that manufacture similar finished units in large quantities. Manufacturers utilize mixed-model assembly lines to produce customized items that are not identical but share some general features in response to consumer needs. To maintain efficiency, the aim is to find the best feasible option to balance the lines efficiently; allocating each task to a workstation to satisfy all restrictions and fulfill all operational requirements in such a way that the line has the highest performance and maximum throughput. The work to be done at each workstation and line depends on the precise product configuration and is not constant across all models. This research seeks to enhance the subject of assembly line balancing by establishing a model for creating the most efficient assembly system. Several realistic characteristics are included into efficient optimization techniques and mathematical models to provide a more comprehensive model for building assembly systems. This involves analyzing the learning growth by task, employing parallel line designs, and configuring mixed models structure under particular constraints and criteria. This dissertation covers a gap in the literature by utilizing some exact and approximation modeling approaches. These methods are based on mathematical programming techniques, including integer and mixed integer models and heuristics. In this dissertation, heuristic approximations are employed to address problem-solving challenges caused by the problem's combinatorial complexity. This study proposes a model that considers learning curve effects and dynamic demand. This is exemplified in instances of a new assembly line, new employees, introducing new products or simply implementing engineering change orders. To achieve a cost-based optimal solution, an integer mathematical formulation is proposed to minimize the production line's total cost under the impact of learning and demand fulfillment. The research further creates approaches to obtain a comprehensive model in the case of single and mixed models for parallel lines systems. Optimization models and heuristics are developed under various aspects, such as cycle times by line and tooling considerations. Numerous extensions are explored effectively to analyze the cost impact under certain constraints and implications. The implementation results demonstrate that the proposed models and heuristics provide valuable insights.
ContributorsAlhomaidi, Esam (Author) / Askin, Ronald G (Thesis advisor) / Yan, Hao (Committee member) / Iquebal, Ashif (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2023
157599-Thumbnail Image.png
Description
This dissertation addresses access management problems that occur in both emergency and outpatient clinics with the objective of allocating the available resources to improve performance measures by considering the trade-offs. Two main settings are considered for estimating patient willingness-to-wait (WtW) behavior for outpatient appointments with statistical analyses of data: allocation

This dissertation addresses access management problems that occur in both emergency and outpatient clinics with the objective of allocating the available resources to improve performance measures by considering the trade-offs. Two main settings are considered for estimating patient willingness-to-wait (WtW) behavior for outpatient appointments with statistical analyses of data: allocation of the limited booking horizon to patients of different priorities by using time windows in an outpatient setting considering patient behavior, and allocation of hospital beds to admitted Emergency Department (ED) patients. For each chapter, a different approach based on the problem context is developed and the performance is analyzed by implementing analytical and simulation models. Real hospital data is used in the analyses to provide evidence that the methodologies introduced are beneficial in addressing real life problems, and real improvements can be achievable by using the policies that are suggested.

This dissertation starts with studying an outpatient clinic context to develop an effective resource allocation mechanism that can improve patient access to clinic appointments. I first start with identifying patient behavior in terms of willingness-to-wait to an outpatient appointment. Two statistical models are developed to estimate patient WtW distribution by using data on booked appointments and appointment requests. Several analyses are conducted on simulated data to observe effectiveness and accuracy of the estimations.

Then, this dissertation introduces a time windows based policy that utilizes patient behavior to improve access by using appointment delay as a lever. The policy improves patient access by allocating the available capacity to the patients from different priorities by dividing the booking horizon into time intervals that can be used by each priority group which strategically delay lower priority patients.

Finally, the patient routing between ED and inpatient units to improve the patient access to hospital beds is studied. The strategy that captures the trade-off between patient safety and quality of care is characterized as a threshold type. Through the simulation experiments developed by real data collected from a hospital, the achievable improvement of implementing such a strategy that considers the safety-quality of care trade-off is illustrated.
ContributorsKilinc, Derya (Author) / Gel, Esma (Thesis advisor) / Pasupathy, Kalyan (Committee member) / Sefair, Jorge (Committee member) / Sir, Mustafa (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2019
161559-Thumbnail Image.png
Description
To maintain long term success, a manufacturing company should be managed and operated under the guidance of properly designed capacity, production and logistics plans that are formulated in coordination with its manufacturing footprint, so that its managerial goals on both strategic and tactical levels can be fulfilled. In particular, sufficient

To maintain long term success, a manufacturing company should be managed and operated under the guidance of properly designed capacity, production and logistics plans that are formulated in coordination with its manufacturing footprint, so that its managerial goals on both strategic and tactical levels can be fulfilled. In particular, sufficient flexibility and efficiency should be ensured so that future customer demand can be met at a profit. This dissertation is motivated by an automobile manufacturer's mid-term and long-term decision problems, but applies to any multi-plant, multi-product manufacturer with evolving product portfolios and significant fixed and variable production costs. Via introducing the concepts of effective capacity and product-specific flexibility, two mixed integer programming (MIP) models are proposed to help manufacturers shape their mid-term capacity plans and long-term product allocation plans. With fixed tooling flexibility, production and logistics considerations are integrated into a mid-term capacity planning model to develop well-informed and balanced tactical plans, which utilize various capacity adjustment options to coordinate production, inventory, and shipping schedules throughout the planning horizon so that overall operational and capacity adjustment costs are minimized. For long-term product allocation planning, strategic tooling configuration plans that empower the production of multi-generation products at minimal configuration and operational costs are established for all plants throughout the planning horizon considering product-specific commonality and compatibility. New product introductions and demand uncertainty over the planning horizon are incorporated. As a result, potential production sites for each product and corresponding process flexibility are determined. An efficient heuristic method is developed and shown to perform well in solution quality and computational requirements.
ContributorsYao, Xufeng (Author) / Askin, Ronald (Thesis advisor) / Sefair, Jorge (Thesis advisor) / Escobedo, Adolfo (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2021