This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

Description
DNA nanotechnology has been a rapidly growing research field in the recent decades, and there have been extensive efforts to construct various types of highly programmable and robust DNA nanostructures. Due to the advantage that DNA nanostructure can be used to organize biochemical molecules with precisely controlled spatial resolution, herein

DNA nanotechnology has been a rapidly growing research field in the recent decades, and there have been extensive efforts to construct various types of highly programmable and robust DNA nanostructures. Due to the advantage that DNA nanostructure can be used to organize biochemical molecules with precisely controlled spatial resolution, herein we used DNA nanostructure as a scaffold for biological applications. Targeted cell-cell interaction was reconstituted through a DNA scaffolded multivalent bispecific aptamer, which may lead to promising potentials in tumor therapeutics. In addition a synthetic vaccine was constructed using DNA nanostructure as a platform to assemble both model antigen and immunoadjuvant together, and strong antibody response was demonstrated in vivo, highlighting the potential of DNA nanostructures to serve as a new platform for vaccine construction, and therefore a DNA scaffolded hapten vaccine is further constructed and tested for its antibody response. Taken together, my research demonstrated the potential of DNA nanostructure to serve as a general platform for immunological applications.
ContributorsLiu, Xiaowei (Author) / Liu, Yan (Thesis advisor) / Chang, Yung (Thesis advisor) / Yan, Hao (Committee member) / Allen, James (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2012