This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155615-Thumbnail Image.png
Description
The scaling of transistors has numerous advantages such as increased memory density, less power consumption and better performance; but on the other hand, they also give rise to many reliability issues. One of the major reliability issue is the hot carrier injection and the effect it has on device degradation

The scaling of transistors has numerous advantages such as increased memory density, less power consumption and better performance; but on the other hand, they also give rise to many reliability issues. One of the major reliability issue is the hot carrier injection and the effect it has on device degradation over time which causes serious circuit malfunctions.

Hot carrier injection has been studied from early 1980's and a lot of research has been done on the various hot carrier injection mechanisms and how the devices get damaged due to this effect. However, most of the existing hot carrier degradation models do not consider the physics involved in the degradation process and they just calculate the change in threshold voltage for different stress voltages and time. Based on this, an analytical expression is formulated that predicts the device lifetime.

This thesis starts by discussing various hot carrier injection mechanisms and the effects it has on the device. Studies have shown charges getting trapped in gate oxide and interface trap generation are two mechanisms for device degradation. How various device parameters get affected due to these traps is discussed here. The physics based models such as lucky hot electron model and substrate current model are presented and gives an idea how the gate current and substrate current can be related to hot carrier injection and density of traps created.

Devices are stressed under various voltages and from the experimental data obtained, the density of trapped charges and interface traps are calculated using mid-gap technique. In this thesis, a simple analytical model based on substrate current is used to calculate the density of trapped charges in oxide and interface traps generated and it is a function of stress voltage and stress time. The model is verified against the data and the TCAD simulations. Finally, the analytical model is incorporated in a Verilog-A model and based on the surface potential method, the threshold voltage shift due to hot carrier stress is calculated.
ContributorsMuthuseenu, Kiraneswar (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Velo, Yago Gonzalez (Committee member) / Arizona State University (Publisher)
Created2017
161640-Thumbnail Image.png
Description
Most hardware today is based on von Neumann architecture separating memory from logic. Valuable processing time is lost in shuttling information back and forth between the two units, a problem called von Neumann bottleneck. As transistors are scaled further down, this bottleneck will make it harder to deliver performance in

Most hardware today is based on von Neumann architecture separating memory from logic. Valuable processing time is lost in shuttling information back and forth between the two units, a problem called von Neumann bottleneck. As transistors are scaled further down, this bottleneck will make it harder to deliver performance in computing power. Adding to this is the increasing complexity of artificial intelligence logic. Thus, there is a need for a faster and more efficient method of computing. Neuromorphic systems deliver this by emulating the massively parallel and fault-tolerant computing capabilities of the human brain where the action potential is triggered by multiple inputs at once (spatial) or an input that builds up over time (temporal). Highly scalable memristors are key in these systems- they can maintain their internal resistive state based on previous current/voltage values thus mimicking the way the strength of two synapses in the brain can vary. The brain-inspired algorithms are implemented by vector matrix multiplications (VMMs) to provide neuronal outputs. High-density conductive bridging random access memory (CBRAM) crossbar arrays (CBAs) can perform VMMs parallelly with ultra-low energy.This research explores a simple planarization technique that could be potentially extended to integrate front-end-of-line (FEOL) processing of complementary metal oxide semiconductor (CMOS) circuitry with back-end-of-line (BEOL) processing of CBRAM CBAs for one-transistor one-resistor (1T1R) Neuromorphic CMOS chips where the transistor is part of the CMOS circuitry and the CBRAM forms the resistor. It is a photoresist (PR) and spin-on glass (SOG) based planarization recipe to planarize CBRAM electrode patterns on a silicon substrate. In this research, however, the planarization is only applied to mechanical grade (MG) silicon wafers without any CMOS layers on them. The planarization achieved was of a very high order (few tens of nanometers). Additionally, the recipe is cost-effective, provides good quality films and simple as only two types of process technologies are involved- lithography and dry etching. Subsequent processing would involve depositing the CBRAM layers onto the planarized electrodes to form the resistor. Finally, the entire process flow is to be replicated onto wafers with CMOS layers to form the 1T1R circuit.
ContributorsBiswas, Prabaha (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Velo, Yago Gonzalez (Committee member) / Arizona State University (Publisher)
Created2021