This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156467-Thumbnail Image.png
Description
The hierarchical silica structure of the Coscinodiscus wailesii diatom was studied due to its intriguing optical properties. To bring the diatom into light harvesting applications, three crucial factors were investigated, including closely-packed diatom monolayer formation, bonding of the diatoms on a substrate, and conversion of silica diatom shells into silicon.

The hierarchical silica structure of the Coscinodiscus wailesii diatom was studied due to its intriguing optical properties. To bring the diatom into light harvesting applications, three crucial factors were investigated, including closely-packed diatom monolayer formation, bonding of the diatoms on a substrate, and conversion of silica diatom shells into silicon.

The closely-packed monolayer formation of diatom valves on silicon substrates was accomplished using their hydrodynamic properties and the surface tension of water. Valves dispersed on a hydrophobic surface were able to float-up with a preferential orientation (convex side facing the water surface) when water was added. The floating diatom monolayer was subsequently transferred to a silicon substrate. A closely-packed diatom monolayer on the silicon substrate was obtained after the water evaporated at room temperature.

The diatom monolayer was then directly bonded onto the substrate via a sintering process at high temperature in air. The percentage of bonded valves increased as the temperature increased. The valves started to sinter into the substrate at 1100°C. The sintering process caused shrinkage of the nanopores at temperatures above 1100°C. The more delicate structure was more sensitive to the elevated temperature. The cribellum, the most intricate nanostructure of the diatom (~50 nm), disappeared at 1125°C. The cribrum, consisting of approximated 100-300 nm diameter pores, disappeared at 1150°C. The areola, the micro-chamber-liked structure, can survive up to 1150°C. At 1200°C, the complete nanostructure was destroyed. In addition, cross-section images revealed that the valves fused into the thermally-grown oxide layer that was generated on the substrate at high temperatures.

The silica-sintered diatom close-packed monolayer, processed at 1125°C, was magnesiothermically converted into porous silicon using magnesium silicide. X-ray diffraction, infrared absorption, energy dispersive X-say spectra and secondary electron images confirmed the formation of a Si layer with preserved diatom nano-microstructure. The conversion process and subsequent application of a PEDOT:PSS coating both decreased the light reflection from the sample. The photocurrent and reflectance spectra revealed that the Si-diatom dominantly enhanced light absorption between 414 to 586 nm and 730 to 800 nm. Though some of the structural features disappeared during the sintering process, the diatom is still able to improve light absorption. Therefore, the sintering process can be used for diatom direct bonding in light harvesting applications.
ContributorsRojsatien, Srisuda (Author) / Goryll, Michael (Thesis advisor) / Alford, Terry (Thesis advisor) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2018
158719-Thumbnail Image.png
Description
Perovskite solar cells are the next generation organic-inorganic hybrid technology and have achieved remarkable efficiencies comparable to Si-based conventional solar cells. Since their inception in 2009 with an efficiency of 3.9%, they have improved tremendously over the past decade and recently demonstrated 25.2% efficiency for single-junction devices. There are a

Perovskite solar cells are the next generation organic-inorganic hybrid technology and have achieved remarkable efficiencies comparable to Si-based conventional solar cells. Since their inception in 2009 with an efficiency of 3.9%, they have improved tremendously over the past decade and recently demonstrated 25.2% efficiency for single-junction devices. There are a few hurdles, however, that prevent this technology from realizing their full potential, such as stability and toxicity of the perovskites. Apart from solution processing in the fabrication of perovskites, precursor composition plays a major role in determining the quality of the thin film and its general properties. This work studies novel approaches for improving the efficiency and stability of the perovskite solar cells with minimized toxicity. The effect of excess Pb on photo-degradation in MAPbI3 perovskites in an inverted device architecture was studied with a focus on improving stability and efficiency. Precursor concentration with 5% excess Pb was found to be optimal for better efficiency and stability against photo-degradation. Further improvements in efficiency were made possible through the addition of Zirconium Acetylacetonate as a secondary electron buffer layer. A concentration of 1.5mg/ml was found to be optimal for demonstrating better efficiency and stability. Partial substitution of Pb with non-toxic Sr was also studied for improving the stability of inverted devices. Using acetate-derived precursors, 10% Sr was introduced into perovskites for improvements to the stability of the device.

In another study, triple-cation perovskites with FAMACs cations were studied with doping different amounts of Phenyl Ethyl Ammonium (PEA) to induce a quasi 2D-3D structure for improved moisture stability. Doping the perovskite with 1.67% PEA was found to be best for improved morphology with fewer pinholes, which further resulted in better VOC and stability. A passivation effect for triple-cation perovskites was further proposed with the addition of a Guanidinium Iodide layer on the perovskite. Concentrations of 1mg/ml and 2mg/ml were demonstrated to be best for reducing defects and trap states and increasing the overall stability of the device.
ContributorsYerramilli, Aditya (Author) / Alford, Terry (Thesis advisor) / Theodore, David (Committee member) / Chen, Yuanqing (Committee member) / Arizona State University (Publisher)
Created2020