This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 51 - 58 of 58
154202-Thumbnail Image.png
Description
The recent proposal of two-way relaying has attracted much attention due to its promising features for many practical scenarios. Hereby, two users communicate simultaneously in both directions to exchange their messages with the help of a relay node. This doctoral study investigates various aspects of two-way relaying. Specifically, the issue

The recent proposal of two-way relaying has attracted much attention due to its promising features for many practical scenarios. Hereby, two users communicate simultaneously in both directions to exchange their messages with the help of a relay node. This doctoral study investigates various aspects of two-way relaying. Specifically, the issue of asynchronism, lack of channel knowledge, transmission of correlated sources and multi-way relaying techniques involving multiple users are explored.

With the motivation of developing enabling techniques for two-way relay (TWR) channels experiencing excessive synchronization errors, two conceptually-different schemes are proposed to accommodate any relative misalignment between the signals received at any node. By designing a practical transmission/detection mechanism based on orthogonal frequency division multiplexing (OFDM), the proposed schemes perform significantly better than existing competing solutions. In a related direction, differential modulation is implemented for asynchronous TWR systems that lack the channel state information (CSI) knowledge. The challenge in this problem compared to the conventional point-to-point counterpart arises not only from the asynchrony but also from the existence of an interfering signal. Extensive numerical examples, supported by analytical work, are given to demonstrate the advantages of the proposed schemes.

Other important issues considered in this dissertation are related to the extension of the two-way relaying scheme to the multiple-user case, known as the multi-way relaying. First, a distributed source coding solution based on Slepian-Wolf coding is proposed to compress correlated messages close to the information theoretical limits in the context of multi-way relay (MWR) channels. Specifically, the syndrome approach based on low-density parity-check (LDPC) codes is implemented. A number of relaying strategies are considered for this problem offering a tradeoff between performance and complexity. The proposed solutions have shown significant improvements compared to the existing ones in terms of the achievable compression rates. On a different front, a novel approach to channel coding is proposed for the MWR channel based on the implementation of nested codes in a distributed manner. This approach ensures that each node decodes the messages of the other users without requiring complex operations at the relay, and at the same time, providing substantial benefits compared to the traditional routing solution.
ContributorsSalīm, Aḥmad (Author) / Duman, Tolga M. (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2015
154232-Thumbnail Image.png
Description
Access Networks provide the backbone to the Internet connecting the end-users to

the core network thus forming the most important segment for connectivity. Access

Networks have multiple physical layer medium ranging from fiber cables, to DSL links

and Wireless nodes, creating practically-used hybrid access networks. We explore the

hybrid access network at the Medium

Access Networks provide the backbone to the Internet connecting the end-users to

the core network thus forming the most important segment for connectivity. Access

Networks have multiple physical layer medium ranging from fiber cables, to DSL links

and Wireless nodes, creating practically-used hybrid access networks. We explore the

hybrid access network at the Medium ACcess (MAC) Layer which receives packets

segregated as data and control packets, thus providing the needed decoupling of data

and control plane. We utilize the Software Defined Networking (SDN) principle of

centralized processing with segregated data and control plane to further extend the

usability of our algorithms. This dissertation introduces novel techniques in Dynamic

Bandwidth allocation, control message scheduling policy, flow control techniques and

Grouping techniques to provide improved performance in Hybrid Passive Optical Networks (PON) such as PON-xDSL, FiWi etc. Finally, we study the different types of

software defined algorithms in access networks and describe the various open challenges and research directions.
ContributorsMercian, Anu (Author) / Reisslein, Martin (Thesis advisor) / McGarry, Michael P (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
154240-Thumbnail Image.png
Description
I propose a new communications scheme where signature signals are used to carry digital data by suitably modulating the signal parameters with information bits. One possible application for the proposed scheme is in underwater acoustic (UWA) communications; with this motivation, I demonstrate how it can be applied in UWA communications.

I propose a new communications scheme where signature signals are used to carry digital data by suitably modulating the signal parameters with information bits. One possible application for the proposed scheme is in underwater acoustic (UWA) communications; with this motivation, I demonstrate how it can be applied in UWA communications. In order to do that, I exploit existing parameterized models for mammalian sounds by using them as signature signals. Digital data is transmitted by mapping vectors of information bits to a carefully designed set of parameters with values obtained from the biomimetic signal models. To complete the overall system design, I develop appropriate receivers taking into account the specific UWA channel models. I present some numerical results from the analysis of data recorded during the Kauai Acomms MURI 2011 (KAM11) UWA communications experiment.

It is shown that the proposed communication scheme results in approximate channel models with amplitude-limited inputs and signal-dependent additive noise. Motivated by this observation, I study capacity of amplitude-limited channels under different transmission scenarios. Specifically, I consider fading channels, signal-dependent additive Gaussian noise channels, multiple-input multiple-output (MIMO) systems and parallel Gaussian channels under peak power constraints.

I also consider practical channel coding problems for channels with signal-dependent noise. I consider two specific models; signal-dependent additive Gaussian noise channels and Z-channels which serve as binary-input binary-output approximations to the Gaussian case. I propose a new upper bound on the probability of error, and utilize it for design of codes. I illustrate the tightness of the derived bounds and the performance of the designed codes via examples.
ContributorsElMoslimany, Ahmad (Author) / Duman, Tolga M. (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2015
157817-Thumbnail Image.png
Description
An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and structured (lattice coding) strategies are studied towards this purpose for

An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and structured (lattice coding) strategies are studied towards this purpose for a certain adaptable system model. Asymptotic performances of these strategies and algorithms to compute them are developed. A jointly-compressed lattice code with proper configuration performs best of all strategies investigated.
ContributorsChapman, Christian Douglas (Author) / Bliss, Daniel W (Thesis advisor) / Richmond, Christ D (Committee member) / Kosut, Oliver (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2019
157507-Thumbnail Image.png
Description
A critical problem for airborne, ship board, and land based radars operating in maritime or littoral environments is the detection, identification and tracking of targets against backscattering caused by the roughness of the sea surface. Statistical models, such as the compound K-distribution (CKD), were shown to accurately describe two

A critical problem for airborne, ship board, and land based radars operating in maritime or littoral environments is the detection, identification and tracking of targets against backscattering caused by the roughness of the sea surface. Statistical models, such as the compound K-distribution (CKD), were shown to accurately describe two separate structures of the sea clutter intensity fluctuations. The first structure is the texture that is associated with long sea waves and exhibits long temporal decorrelation period. The second structure is the speckle that accounts for reflections from multiple scatters and exhibits a short temporal decorrelation period from pulse to pulse. Existing methods for estimating the CKD model parameters do not include the thermal noise power, which is critical for real sea clutter processing. Estimation methods that include the noise power are either computationally intensive or require very large data records.



This work proposes two new approaches for accurately estimating all three CKD model parameters, including noise power. The first method integrates, in an iterative fashion, the noise power estimation, using one-dimensional nonlinear curve fitting,

with the estimation of the shape and scale parameters, using closed-form solutions in terms of the CKD intensity moments. The second method is similar to the first except it replaces integer-based intensity moments with fractional moments which have been shown to achieve more accurate estimates of the shape parameter. These new methods can be implemented in real time without requiring large data records. They can also achieve accurate estimation performance as demonstrated with simulated and real sea clutter observation datasets. The work also investigates the numerically computed Cram\'er-Rao lower bound (CRLB) of the variance of the shape parameter estimate using intensity observations in thermal noise with unknown power. Using the CRLB, the asymptotic estimation performance behavior of the new estimators is studied and compared to that of other estimators.
ContributorsNorthrop, Judith (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Maurer, Alexander (Committee member) / Arizona State University (Publisher)
Created2019
158654-Thumbnail Image.png
Description
In recent years, the widespread use of deep neural networks (DNNs) has facilitated great improvements in performance for computer vision tasks like image classification and object recognition. In most realistic computer vision applications, an input image undergoes some form of image distortion such as blur and additive noise during image

In recent years, the widespread use of deep neural networks (DNNs) has facilitated great improvements in performance for computer vision tasks like image classification and object recognition. In most realistic computer vision applications, an input image undergoes some form of image distortion such as blur and additive noise during image acquisition or transmission. Deep networks trained on pristine images perform poorly when tested on such distortions. DNN predictions have also been shown to be vulnerable to carefully crafted adversarial perturbations. Specifically, so-called universal adversarial perturbations are image-agnostic perturbations that can be added to any image and can fool a target network into making erroneous predictions. This work proposes selective DNN feature regeneration to improve the robustness of existing DNNs to image distortions and universal adversarial perturbations.

In the context of common naturally occurring image distortions, a metric is proposed to identify the most susceptible DNN convolutional filters and rank them in order of the highest gain in classification accuracy upon correction. The proposed approach called DeepCorrect applies small stacks of convolutional layers with residual connections at the output of these ranked filters and trains them to correct the most distortion-affected filter activations, whilst leaving the rest of the pre-trained filter outputs in the network unchanged. Performance results show that applying DeepCorrect models for common vision tasks significantly improves the robustness of DNNs against distorted images and outperforms other alternative approaches.

In the context of universal adversarial perturbations, departing from existing defense strategies that work mostly in the image domain, a novel and effective defense which only operates in the DNN feature domain is presented. This approach identifies pre-trained convolutional features that are most vulnerable to adversarial perturbations and deploys trainable feature regeneration units which transform these DNN filter activations into resilient features that are robust to universal perturbations. Regenerating only the top 50% adversarially susceptible activations in at most 6 DNN layers and leaving all remaining DNN activations unchanged can outperform existing defense strategies across different network architectures and across various universal attacks.
ContributorsBorkar, Tejas Shyam (Author) / Karam, Lina J (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2020
161906-Thumbnail Image.png
Description
In many real-world machine learning classification applications, well labeled training data can be difficult, expensive, or even impossible to obtain. In such situations, it is sometimes possible to label a small subset of data as belonging to the class of interest though it is impractical to manually label all data

In many real-world machine learning classification applications, well labeled training data can be difficult, expensive, or even impossible to obtain. In such situations, it is sometimes possible to label a small subset of data as belonging to the class of interest though it is impractical to manually label all data not of interest. The result is a small set of positive labeled data and a large set of unknown and unlabeled data. This is known as the Positive and Unlabeled learning (PU learning) problem, a type of semi-supervised learning. In this dissertation, the PU learning problem is rigorously defined, several common assumptions described, and a literature review of the field provided. A new family of effective PU learning algorithms, the MLR (Modified Logistic Regression) family of algorithms, is described. Theoretical and experimental justification for these algorithms is provided demonstrating their success and flexibility. Extensive experimentation and empirical evidence are provided comparing several new and existing PU learning evaluation estimation metrics in a wide variety of scenarios. The surprisingly clear advantage of a simple recall estimate as the best estimate for overall PU classifier performance is described. Finally, an application of PU learning to the field of solar fault detection, an area not previously explored in the field, demonstrates the advantage and potential of PU learning in new application domains.
ContributorsJaskie, Kristen P (Author) / Spanias, Andreas (Thesis advisor) / Blain-Christen, Jennifer (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Thiagarajan, Jayaraman (Committee member) / Arizona State University (Publisher)
Created2021
190903-Thumbnail Image.png
Description
This dissertation centers on the development of Bayesian methods for learning differ- ent types of variation in switching nonlinear gene regulatory networks (GRNs). A new nonlinear and dynamic multivariate GRN model is introduced to account for different sources of variability in GRNs. The new model is aimed at more precisely

This dissertation centers on the development of Bayesian methods for learning differ- ent types of variation in switching nonlinear gene regulatory networks (GRNs). A new nonlinear and dynamic multivariate GRN model is introduced to account for different sources of variability in GRNs. The new model is aimed at more precisely capturing the complexity of GRN interactions through the introduction of time-varying kinetic order parameters, while allowing for variability in multiple model parameters. This model is used as the drift function in the development of several stochastic GRN mod- els based on Langevin dynamics. Six models are introduced which capture intrinsic and extrinsic noise in GRNs, thereby providing a full characterization of a stochastic regulatory system. A Bayesian hierarchical approach is developed for learning the Langevin model which best describes the noise dynamics at each time step. The trajectory of the state, which are the gene expression values, as well as the indicator corresponding to the correct noise model are estimated via sequential Monte Carlo (SMC) with a high degree of accuracy. To address the problem of time-varying regulatory interactions, a Bayesian hierarchical model is introduced for learning variation in switching GRN architectures with unknown measurement noise covariance. The trajectory of the state and the indicator corresponding to the network configuration at each time point are estimated using SMC. This work is extended to a fully Bayesian hierarchical model to account for uncertainty in the process noise covariance associated with each network architecture. An SMC algorithm with local Gibbs sampling is developed to estimate the trajectory of the state and the indicator correspond- ing to the network configuration at each time point with a high degree of accuracy. The results demonstrate the efficacy of Bayesian methods for learning information in switching nonlinear GRNs.
ContributorsVélez-Cruz, Nayely (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Moraffah, Bahman (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2023