This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

151324-Thumbnail Image.png
Description
A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first part investigates stochastic optimization in real-time wireless systems, with the focus on the deadline-aware scheduling for real-time traffic. The optimal solution to such scheduling problems requires to explicitly taking into account the coupling in the deadline-aware transmissions and stochastic characteristics of the traffic, which involves a dynamic program that is traditionally known to be intractable or computationally expensive to implement. First, real-time scheduling with adaptive network coding over memoryless channels is studied, and a polynomial-time complexity algorithm is developed to characterize the optimal real-time scheduling. Then, real-time scheduling over Markovian channels is investigated, where channel conditions are time-varying and online channel learning is necessary, and the optimal scheduling policies in different traffic regimes are studied. The second part focuses on the stochastic optimization and real-time scheduling involved in energy systems. First, risk-aware scheduling and dispatch for plug-in electric vehicles (EVs) are studied, aiming to jointly optimize the EV charging cost and the risk of the load mismatch between the forecasted and the actual EV loads, due to the random driving activities of EVs. Then, the integration of wind generation at high penetration levels into bulk power grids is considered. Joint optimization of economic dispatch and interruptible load management is investigated using short-term wind farm generation forecast. The third part studies stochastic optimization in distributed control systems under different network environments. First, distributed spectrum access in cognitive radio networks is investigated by using pricing approach, where primary users (PUs) sell the temporarily unused spectrum and secondary users compete via random access for such spectrum opportunities. The optimal pricing strategy for PUs and the corresponding distributed implementation of spectrum access control are developed to maximize the PU's revenue. Then, a systematic study of the nonconvex utility-based power control problem is presented under the physical interference model in ad-hoc networks. Distributed power control schemes are devised to maximize the system utility, by leveraging the extended duality theory and simulated annealing.
ContributorsYang, Lei (Author) / Zhang, Junshan (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Xue, Guoliang (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2012
154660-Thumbnail Image.png
Description
The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and

The research on the topology and dynamics of complex networks is one of the most focused area in complex system science. The goals are to structure our understanding of the real-world social, economical, technological, and biological systems in the aspect of networks consisting a large number of interacting units and to develop corresponding detection, prediction, and control strategies. In this highly interdisciplinary field, my research mainly concentrates on universal estimation schemes, physical controllability, as well as mechanisms behind extreme events and cascading failure for complex networked systems.

Revealing the underlying structure and dynamics of complex networked systems from observed data without of any specific prior information is of fundamental importance to science, engineering, and society. We articulate a Markov network based model, the sparse dynamical Boltzmann machine (SDBM), as a universal network structural estimator and dynamics approximator based on techniques including compressive sensing and K-means algorithm. It recovers the network structure of the original system and predicts its short-term or even long-term dynamical behavior for a large variety of representative dynamical processes on model and real-world complex networks.

One of the most challenging problems in complex dynamical systems is to control complex networks.

Upon finding that the energy required to approach a target state with reasonable precision

is often unbearably large, and the energy of controlling a set of networks with similar structural properties follows a fat-tail distribution, we identify fundamental structural ``short boards'' that play a dominant role in the enormous energy and offer a theoretical interpretation for the fat-tail distribution and simple strategies to significantly reduce the energy.

Extreme events and cascading failure, a type of collective behavior in complex networked systems, often have catastrophic consequences. Utilizing transportation and evolutionary game dynamics as prototypical

settings, we investigate the emergence of extreme events in simplex complex networks, mobile ad-hoc networks and multi-layer interdependent networks. A striking resonance-like phenomenon and the emergence of global-scale cascading breakdown are discovered. We derive analytic theories to understand the mechanism of

control at a quantitative level and articulate cost-effective control schemes to significantly suppress extreme events and the cascading process.
ContributorsChen, Yuzhong (Author) / Lai, Ying-Cheng (Thesis advisor) / Spanias, Andreas (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2016
155665-Thumbnail Image.png
Description
Dynamic spectrum access (DSA) has great potential to address worldwide spectrum shortage by enhancing spectrum efficiency. It allows unlicensed secondary users to access the under-utilized spectrum when the primary users are not transmitting. On the other hand, the open wireless medium subjects DSA systems to various security and privacy issues,

Dynamic spectrum access (DSA) has great potential to address worldwide spectrum shortage by enhancing spectrum efficiency. It allows unlicensed secondary users to access the under-utilized spectrum when the primary users are not transmitting. On the other hand, the open wireless medium subjects DSA systems to various security and privacy issues, which might hinder the practical deployment. This dissertation consists of two parts to discuss the potential challenges and solutions.

The first part consists of three chapters, with a focus on secondary-user authentication. Chapter One gives an overview of the challenges and existing solutions in spectrum-misuse detection. Chapter Two presents SpecGuard, the first crowdsourced spectrum-misuse detection framework for DSA systems. In SpecGuard, three novel schemes are proposed for embedding and detecting a spectrum permit at the physical layer. Chapter Three proposes SafeDSA, a novel PHY-based scheme utilizing temporal features for authenticating secondary users. In SafeDSA, the secondary user embeds his spectrum authorization into the cyclic prefix of each physical-layer symbol, which can be detected and authenticated by a verifier.

The second part also consists of three chapters, with a focus on crowdsourced spectrum sensing (CSS) with privacy consideration. CSS allows a spectrum sensing provider (SSP) to outsource the spectrum sensing to distributed mobile users. Without strong incentives and location-privacy protection in place, however, mobile users are reluctant to act as crowdsourcing workers for spectrum-sensing tasks. Chapter Four gives an overview of the challenges and existing solutions. Chapter Five presents PriCSS, where the SSP selects participants based on the exponential mechanism such that the participants' sensing cost, associated with their locations, are privacy-preserved. Chapter Six further proposes DPSense, a framework that allows the honest-but-curious SSP to select mobile users for executing spatiotemporal spectrum-sensing tasks without violating the location privacy of mobile users. By collecting perturbed location traces with differential privacy guarantee from participants, the SSP assigns spectrum-sensing tasks to participants with the consideration of both spatial and temporal factors.

Through theoretical analysis and simulations, the efficacy and effectiveness of the proposed schemes are validated.
ContributorsJin, Xiaocong (Author) / Zhang, Yanchao (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2017