This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

152510-Thumbnail Image.png
Description
Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.
ContributorsHruby, Peter (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
151236-Thumbnail Image.png
Description
With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage

With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage tolerance than Pb-Sn alloys. Recently, a new class of alloys with trace amount of rare-earth (RE) elements has been discovered and investigated. In previous work from Prof. Chawla's group, it has been shown that cerium (Ce)-based Pb-free solder are less prone to oxidation and Sn whiskering, and exhibit desirable attributes of microstructural refinement and enhanced ductility relative to lanthanum (La)-based Sn-3.9Ag-0.7Cu (SAC) alloy. Although the formation of RESn3 was believed to be directly responsible for the enhanced ductility in RE-containing SAC solder by allowing microscopic voids to nucleate throughout the solder volume, this cavitation-based mechanism needs to be validated experimentally and numerically. Additionally, since the previous study has exhibited the realistic feasibility of Ce-based SAC lead-free solder alloy as a replacement to conventional SAC alloys, in this study, the proposed objective focuses on the in in-depth understanding of mechanism of enhanced ductility in Ce-based SAC alloy and possible issues associated with integration of this new class of solder into electronic industry, including: (a) study of long-term thermal and mechanical stability on industrial metallization, (b) examine the role of solder volume and wetting behavior of the new solder, relative to Sn-3.9Ag-0.7Cu alloys, (c) conduct experiments of new solder alloys in the form of mechanical shock and electromigration. The research of this new class alloys will be conducted in industrially relevant conditions, and the results would serve as the first step toward integration of these new, next generation solders into the industry.
ContributorsXie, Huxiao (Author) / Chawla, Nikhilesh (Thesis advisor) / Krause, Stephen (Committee member) / Solanki, Kiran (Committee member) / Mirpuri, Kabir (Committee member) / Arizona State University (Publisher)
Created2012
154124-Thumbnail Image.png
Description
The objective of this research is to develop robust, accurate, and adaptive algorithms in the framework of the extended finite element method (XFEM) for fracture analysis of highly heterogeneous materials with complex internal geometries. A key contribution of this work is the creation of novel methods designed to automate the

The objective of this research is to develop robust, accurate, and adaptive algorithms in the framework of the extended finite element method (XFEM) for fracture analysis of highly heterogeneous materials with complex internal geometries. A key contribution of this work is the creation of novel methods designed to automate the incorporation of high-resolution data, e.g. from X-ray tomography, that can be used to better interpret the enormous volume of data generated in modern in-situ experimental testing. Thus new algorithms were developed for automating analysis of complex microstructures characterized by segmented tomographic images.

A centrality-based geometry segmentation algorithm was developed to accurately identify discrete inclusions and particles in composite materials where limitations in imaging resolution leads to spurious connections between particles in close contact.To allow for this algorithm to successfully segment geometry independently of particle size and shape, a relative centrality metric was defined to allow for a threshold centrality criterion for removal of voxels that spuriously connect distinct geometries.

To automate incorporation of microstructural information from high-resolution images, two methods were developed that initialize signed distance fields on adaptively-refined finite element meshes. The first method utilizes a level set evolution equation that is directly solved on the finite element mesh through Galerkins method. The evolution equation is formulated to produce a signed distance field that matches geometry defined by a set of voxels segmented from tomographic images. The method achieves optimal convergence for the order of elements used. In a second approach, the fast marching method is employed to initialize a distance field on a uniform grid which is then projected by least squares onto a finite element mesh. This latter approach is shown to be superior in speed and accuracy.

Lastly, extended finite element method simulations are performed for the analysis of particle fracture in metal matrix composites with realistic particle geometries initialized from X-ray tomographic data. In the simulations, particles fracture probabilistically through a Weibull strength distribution. The model is verified through comparisons with the experimentally-measured stress-strain response of the material as well as analysis of the fracture. Further, simulations are then performed to analyze the effect of mesh sensitivity, the effect of fracture of particles on their neighbors, and the role of a particles shape on its fracture probability.
ContributorsYuan, Rui (Author) / Oswald, Jay (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Liu, Yongming (Committee member) / Solanki, Kiran (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
154008-Thumbnail Image.png
Description
Al 7075 alloys are used in a variety of structural applications, such as aircraft wings, automotive components, fuselage, spacecraft, missiles, etc. The mechanical and corrosion behavior of these alloys are dependent on their microstructure and the environment. Therefore, a comprehensive study on microstructural characterization and stress-environment interaction is necessary. Traditionally,

Al 7075 alloys are used in a variety of structural applications, such as aircraft wings, automotive components, fuselage, spacecraft, missiles, etc. The mechanical and corrosion behavior of these alloys are dependent on their microstructure and the environment. Therefore, a comprehensive study on microstructural characterization and stress-environment interaction is necessary. Traditionally, 2D techniques have been used to characterize microstructure, which are inaccurate and inadequate since the research has shown that the results obtained in the bulk are different from those obtained on the surface. There now exist several techniques in 3D, which can be used to characterize the microstructure. Al 7075 alloys contain second phase particles which can be classified as Fe-bearing inclusions, Si-bearing inclusions and precipitates. The variation in mechanical and corrosion properties of aluminum alloys has been attributed to the size, shape, distribution, corrosion properties and mechanical behavior of these precipitates and constituent particles. Therefore, in order to understand the performance of Al 7075 alloys, it is critical to investigate the size and distribution of inclusions and precipitates in the alloys along with their mechanical properties, such as Young's modulus, hardness and stress-strain behavior. X-ray tomography and FIB tomography were used to visualize and quantify the microstructure of constituent particles (inclusions) and precipitates, respectively. Microscale mechanical characterization techniques, such as nanoindentation and micropillar compression, were used to obtain mechanical properties of inclusions. Over the years, studies have used surface measurements to understand corrosion behavior of materials. More recently, in situ mechanical testing has become more attractive and advantageous, as it enables visualization and quantification of microstructural changes as a function of time (4D). In this study, in situ X-ray synchrotron tomography was used to study the SCC behavior of Al 7075 alloys in moisture and deionized water. Furthermore, experiments were performed in EXCO solution to study the effect of applied stress on exfoliation behavior in 3D. Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, three dimensional measurements of the crack length led to a much more accurate measurement of crack growth rates.
ContributorsSingh, Sudhanshu Shekhar (Author) / Chawla, Nikhilesh (Thesis advisor) / Alford, Terry (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2015
155916-Thumbnail Image.png
Description
Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy’s solid solution and offer resistance to deformation. Although they have been extensively investigated in

Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy’s solid solution and offer resistance to deformation. Although they have been extensively investigated in the last century, the traditional approaches employed in the past haven’t rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their three-dimensional (3D) spatial distribution on evolution and deformation behavior have often been precluded. In this study, for the first time, synchrotron-based hard X-ray nano-tomography has been implemented in Al-Cu alloys to measure growth kinetics of different nanoscale phases in 3D and reveal mechanistic insights behind some of the observed novel phase transformation reactions occurring at high temperatures. The experimental results were reconciled with coarsening models from the LSW theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. By using a unique correlative approach, a non-destructive means of estimating precipitation-strengthening in such alloys has been introduced. Limitations of using existing mechanical strengthening models in such alloys have been discussed and a means to quantify individual contributions from different strengthening mechanisms has been established.

The current rapid pace of technological progress necessitates the demand for more resilient and high-performance alloys. To achieve this, a thorough understanding of the relationships between material properties and its structure is indispensable. To establish this correlation and achieve desired properties from structural alloys, microstructural response to mechanical stimuli needs to be understood in three-dimensions (3D). To that effect, in situ tests were conducted at the synchrotron (Advanced Photon Source) using Transmission X-Ray Microscopy as well as in a scanning electron microscope (SEM) to study real-time damage evolution in such alloys. Findings of precipitate size-dependent transition in deformation behavior from these tests have inspired a novel resilient aluminum alloy design.
ContributorsKaira, Chandrashekara Shashank (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Jiao, Yang (Committee member) / De Andrade, Vincent (Committee member) / Arizona State University (Publisher)
Created2017
155793-Thumbnail Image.png
Description
Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size,

Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size, conventional dislocation plasticity is curtailed in these materials and grain boundary mediated mechanisms become more important. Although the deformation behavior and the underlying mechanisms in these materials have been investigated in depth, relatively little attention has been focused on the inhomogeneous nature of their microstructure (particularly originating from the texture of the film) and its influence on their macroscopic response. Furthermore, the rate dependency of mechanical response in NC/UFG metal films with different textures has not been systematically investigated. The objectives of this dissertation are two-fold.

The first objective is to carry out a systematic investigation of the mechanical behavior of NC/UFG thin films with different textures under different loading rates. This includes a novel approach to study the effect of texture-induced plastic anisotropy on mechanical behavior of the films. Efforts are made to correlate the behavior of UFG metal films and the underlying deformation mechanisms. The second objective is to understand the deformation mechanisms of UFG aluminum films using in-situ transmission electron microscopy (TEM) experiments with Automated Crystal Orientation Mapping. This technique enables us to investigate grain rotations in UFG Al films and to monitor the microstructural changes in these films during deformation, thereby revealing detailed information about the deformation mechanisms prevalent in UFG metal films.
ContributorsIzadi, Ehsan (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Peralta, Pedro (Committee member) / Chawla, Nikhilesh (Committee member) / Solanki, Kiran (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2017
155602-Thumbnail Image.png
Description
Sn and Al alloys are widely used in various industries. Environmental-induced damage resulting in whiskering in Sn and corrosion in Al account for numerous failures globally every year. Therefore, for designing materials that can better withstand these failures, a comprehensive study on the characterization of the damage is necessary. This

Sn and Al alloys are widely used in various industries. Environmental-induced damage resulting in whiskering in Sn and corrosion in Al account for numerous failures globally every year. Therefore, for designing materials that can better withstand these failures, a comprehensive study on the characterization of the damage is necessary. This research implements advanced characterization techniques to study the above-mentioned environmental-induced damage in Sn and Al alloys.

Tin based films are known to be susceptible to whisker growth resulting in numerous failures. While the mechanisms and factors affecting whisker growth have been studied extensively, not much has been reported on the mechanical properties of tin whiskers themselves. This study focuses on the tensile behavior of tin whiskers. Tensile tests of whiskers were conducted in situ a dual beam focused ion beam (FIB) with a scanning electron microscope (SEM) using a micro electro-mechanical system (MEMS) tensile testing stage. The deformation mechanisms of whiskers were analyzed using transmission electron microscopy (TEM).

Due to the heterogenous nature of the microstructure of Al 7075, it is susceptible to corrosion forming corrosion products and pits. These can be sites for cracks nucleation and propagation resulting in stress corrosion cracking (SCC). Therefore, complete understanding of the corrosion damaged region and its effect on the strength of the alloy is necessary. Several studies have been performed to visualize pits and understand their effect on the mechanical performance of Al alloys using two-dimensional (2D) approaches which are often inadequate. To get a thorough understanding of the pits, it is necessary for three-dimensional (3D) studies. In this study, Al 7075 alloys were corroded in 3.5 wt.% NaCl solution and X-ray tomography was used to obtain the 3D microstructure of pits enabling the quantification of their dimensions accurately. Furthermore, microstructure and mechanical property correlations helped in a better understanding of the effect of corrosion. Apart from the pits, a surface corrosion layer also forms on Al. A subsurface damage layer has also been identified that forms due to the aggressive nature of NaCl. Energy dispersive X-ray spectroscopy (EDX) and nanoindentation helped in identifying this region and understanding the variation in properties.
ContributorsVallabhaneni, Venkata Sathya Sai Renuka (Author) / Chawla, Nikhilesh (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2017