This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 13
Filtering by

Clear all filters

152273-Thumbnail Image.png
Description
This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended

This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended Kalman Filters are commonly used in state estimation; however, they do not allow inclusion of constraints in their formulation. On the other hand, computational complexity of full information estimation (using all measurements) grows with iteration and becomes intractable. One way of formulating the recursive state estimation problem with constraints is the Moving Horizon Estimation (MHE) approximation. Estimates of states are calculated from the solution of a constrained optimization problem of fixed size. Detailed formulation of this strategy is studied and properties of this estimation algorithm are discussed in this work. The problem with the MHE formulation is solving an optimization problem in each iteration which is computationally intensive. State estimation with constraints can be formulated as Extended Kalman Filter (EKF) with a projection applied to estimates. The states are estimated from the measurements using standard Extended Kalman Filter (EKF) algorithm and the estimated states are projected on to a constrained set. Detailed formulation of this estimation strategy is studied and the properties associated with this algorithm are discussed. Both these state estimation strategies (MHE and EKF with projection) are tested with examples from the literature. The average estimation time and the sum of square estimation error are used to compare performance of these estimators. Results of the case studies are analyzed and trade-offs are discussed.
ContributorsJoshi, Rakesh (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
152330-Thumbnail Image.png
Description
This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to goal behavior is the ability of the mobile vehicle to

This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to goal behavior is the ability of the mobile vehicle to go from one particular co-ordinate to another. Cruise control, cartesian and posture stabilization problems are discussed as the part of this behavior. Control strategies used for the above three problems are explained in the thesis. Matlab simulations are presented to verify these controllers. Obstacle avoidance behavior ensures that the vehicle doesn't hit object in its path while going towards the goal. Three different techniques for obstacle avoidance which are useful for different kind of obstacles are described in the thesis. Matlab simulations are presented to show and discuss the three techniques. The controls discussed for the cartesian and posture stabilization were implemented on a low cost miniature vehicle to verify the results practically. The vehicle is described in the thesis in detail. The practical results are compared with the simulations. Hardware and matlab codes have been provided as a reference for the reader.
ContributorsChopra, Dhruv (Author) / Rodriguez, Armando A (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
149854-Thumbnail Image.png
Description
There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment dosages over time based on participant response. Control engineering offers a broad-based solution framework for optimizing the effectiveness of such

There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment dosages over time based on participant response. Control engineering offers a broad-based solution framework for optimizing the effectiveness of such interventions. In this thesis, an approach is proposed to develop dynamical models and subsequently, hybrid model predictive control schemes for assigning optimal dosages of naltrexone, an opioid antagonist, as treatment for a chronic pain condition known as fibromyalgia. System identification techniques are employed to model the dynamics from the daily diary reports completed by participants of a blind naltrexone intervention trial. These self-reports include assessments of outcomes of interest (e.g., general pain symptoms, sleep quality) and additional external variables (disturbances) that affect these outcomes (e.g., stress, anxiety, and mood). Using prediction-error methods, a multi-input model describing the effect of drug, placebo and other disturbances on outcomes of interest is developed. This discrete time model is approximated by a continuous second order model with zero, which was found to be adequate to capture the dynamics of this intervention. Data from 40 participants in two clinical trials were analyzed and participants were classified as responders and non-responders based on the models obtained from system identification. The dynamical models can be used by a model predictive controller for automated dosage selection of naltrexone using feedback/feedforward control actions in the presence of external disturbances. The clinical requirement for categorical (i.e., discrete-valued) drug dosage levels creates a need for hybrid model predictive control (HMPC). The controller features a multiple degree-of-freedom formulation that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed loop system. The nominal and robust performance of the proposed control scheme is examined via simulation using system identification models from a representative participant in the naltrexone intervention trial. The controller evaluation described in this thesis gives credibility to the promise and applicability of control engineering principles for optimizing adaptive interventions.
ContributorsDeśapāṇḍe, Sunīla (Author) / Rivera, Daniel E. (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
150982-Thumbnail Image.png
Description
This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal

This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.
ContributorsDickeson, Jeffrey James (Author) / Rodriguez, Armando A (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Wells, Valana (Committee member) / Kawski, Mattias (Committee member) / Arizona State University (Publisher)
Created2012
155932-Thumbnail Image.png
Description
The purpose of this dissertation is to develop a design technique for fractional PID controllers to achieve a closed loop sensitivity bandwidth approximately equal to a desired bandwidth using frequency loop shaping techniques. This dissertation analyzes the effect of the order of a fractional integrator which is used as a

The purpose of this dissertation is to develop a design technique for fractional PID controllers to achieve a closed loop sensitivity bandwidth approximately equal to a desired bandwidth using frequency loop shaping techniques. This dissertation analyzes the effect of the order of a fractional integrator which is used as a target on loop shaping, on stability and performance robustness. A comparison between classical PID controllers and fractional PID controllers is presented. Case studies where fractional PID controllers have an advantage over classical PID controllers are discussed. A frequency-domain loop shaping algorithm is developed, extending past results from classical PID’s that have been successful in tuning controllers for a variety of practical systems.
ContributorsSaleh, Khalid M (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Si, Jennie (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
156988-Thumbnail Image.png
Description
Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter

Unmanned aerial vehicles (UAVs) are widely used in many applications because of their small size, great mobility and hover performance. This has been a consequence of the fast development of electronics, cheap lightweight flight controllers for accurate positioning and cameras. This thesis describes modeling, control and design of an oblique-cross-quadcopter platform for indoor-environments.

One contribution of the work was the design of a new printed-circuit-board (PCB) flight controller (called MARK3). Key features/capabilities are as follows:

(1) a Teensy 3.2 microcontroller with 168MHz overclock –used for communications, full-state estimation and inner-outer loop hierarchical rate-angle-speed-position control,

(2) an on-board MEMS inertial-measurement-unit (IMU) which includes an LSM303D (3DOF-accelerometer and magnetometer), an L3GD20 (3DOF-gyroscope) and a BMP180 (barometer) for attitude estimation (barometer/magnetometer not used),

(3) 6 pulse-width-modulator (PWM) output pins supports up to 6 rotors

(4) 8 PWM input pins support up to 8-channel 2.4 GHz transmitter/receiver for manual control,

(5) 2 5V servo extension outputs for other requirements (e.g. gimbals),

(6) 2 universal-asynchronous-receiver-transmitter (UART) serial ports - used by flight controller to process data from Xbee; can be used for accepting outer-loop position commands from NVIDIA TX2 (future work),

(7) 1 I2C-serial-protocol two-wire port for additional modules (used to read data from IMU at 400 Hz),

(8) a 20-pin port for Xbee telemetry module connection; permits Xbee transceiver on desktop PC to send position/attitude commands to Xbee transceiver on quadcopter.

The quadcopter platform consists of the new MARK3 PCB Flight Controller, an ATG-250 carbon-fiber frame (250 mm), a DJI Snail propulsion-system (brushless-three-phase-motor, electronic-speed-controller (ESC) and propeller), an HTC VIVE Tracker and RadioLink R9DS 9-Channel 2.4GHz Receiver. This platform is completely compatible with the HTC VIVE Tracking System (HVTS) which has 7ms latency, submillimeter accuracy and a much lower price compared to other millimeter-level tracking systems.

The thesis describes nonlinear and linear modeling of the quadcopter’s 6DOF rigid-body dynamics and brushless-motor-actuator dynamics. These are used for hierarchical-classical-control-law development near hover. The HVTS was used to demonstrate precision hover-control and path-following. Simulation and measured flight-data are shown to be similar. This work provides a foundation for future precision multi-quadcopter formation-flight-control.
ContributorsLu, Shi (Author) / Rodriguez, Armando A. (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2018
168698-Thumbnail Image.png
Description
Soft continuum robots with the ability to bend, twist, elongate, and shorten, similar to octopus arms, have many potential applications, such as dexterous manipulation and navigation through unstructured, dynamic environments. Novel soft materials such as smart hydrogels, which change volume and other properties in response to stimuli such as temperature,

Soft continuum robots with the ability to bend, twist, elongate, and shorten, similar to octopus arms, have many potential applications, such as dexterous manipulation and navigation through unstructured, dynamic environments. Novel soft materials such as smart hydrogels, which change volume and other properties in response to stimuli such as temperature, pH, and chemicals, can potentially be used to construct soft robots that achieve self-regulated adaptive reconfiguration through on-demand dynamic control of local properties. However, the design of controllers for soft continuum robots is challenging due to their high-dimensional configuration space and the complexity of modeling soft actuator dynamics. To address these challenges, this dissertation presents two different model-based control approaches for robots with distributed soft actuators and sensors and validates the approaches in simulations and physical experiments. It is demonstrated that by choosing an appropriate dynamical model and designing a decentralized controller based on this model, such robots can be controlled to achieve diverse types of complex configurations. The first approach consists of approximating the dynamics of the system, including its actuators, as a linear state-space model in order to apply optimal robust control techniques such as H∞ state-feedback and H∞ output-feedback methods. These techniques are designed to utilize the decentralized control structure of the robot and its distributed sensing and actuation to achieve vibration control and trajectory tracking. The approach is validated in simulation on an Euler-Bernoulli dynamic model of a hydrogel based cantilevered robotic arm and in experiments with a hydrogel-actuated miniature 2-DOF manipulator. The second approach is developed for soft continuum robots with dynamics that can be modeled using Cosserat rod theory. An inverse dynamics control approach is implemented on the Cosserat model of the robot for tracking configurations that include bending, torsion, shear, and extension deformations. The decentralized controller structure facilitates its implementation on robot arms composed of independently-controllable segments that have local sensing and actuation. This approach is validated on simulated 3D robot arms and on an actual silicone robot arm with distributed pneumatic actuation, for which the inverse dynamics problem is solved in simulation and the computed control outputs are applied to the robot in real-time.
ContributorsDoroudchi, Azadeh (Author) / Berman, Spring (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2022
168451-Thumbnail Image.png
Description
This dissertation examines modeling, design and control challenges associatedwith two classes of power converters: a direct current-direct current (DC-DC) step-down (buck) regulator and a 3-phase (3-ϕ) 4-wire direct current-alternating current (DC-AC) inverter. These are widely used for power transfer in a variety of industrial and personal applications. This motivates the precise quantification

This dissertation examines modeling, design and control challenges associatedwith two classes of power converters: a direct current-direct current (DC-DC) step-down (buck) regulator and a 3-phase (3-ϕ) 4-wire direct current-alternating current (DC-AC) inverter. These are widely used for power transfer in a variety of industrial and personal applications. This motivates the precise quantification of conditions under which existing modeling and design methods yield satisfactory designs, and the study of alternatives when they don’t. This dissertation describes a method utilizing Fourier components of the input square wave and the inductor-capacitor (LC) filter transfer function, which doesn’t require the small ripple approximation. Then, trade-offs associated with the choice of the filter order are analyzed for integrated buck converters with a constraint on their chip area. Design specifications which would justify using a fourth or sixth order filter instead of the widely used second order one are examined. Next, sampled-data (SD) control of a buck converter is analyzed. Three methods for the digital controller design are studied: analog design followed by discretization, direct digital design of a discretized plant, and a “lifting” based method wherein the sampling time is incorporated in the design process by lifting the continuous-time design plant before doing the controller design. Specifically, controller performance is quantified by studying the induced-L2 norm of the closed loop system for a range of switching/sampling frequencies. In the final segment of this dissertation, the inner-outer control loop, employed in inverters with an inductor-capacitor-inductor (LCL) output filter, is studied. Closed loop sensitivities for the loop broken at the error and the control are examined, demonstrating that traditional methods only address these properties for one loop-breaking point. New controllers are then provided for improving both sets of properties.
ContributorsSarkar, Aratrik (Author) / Rodriguez, Armando A (Thesis advisor) / Si, Jennie (Committee member) / Mittelmann, Hans D (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2021
153717-Thumbnail Image.png
Description
This thesis addresses the design and control of three phase inverters. Such inverters are

used to produce three-phase sinusoidal voltages and currents from a DC source. They

are critical for injecting power from renewable energy sources into the grid. This is

especially true since many of these sources of energy are DC sources

This thesis addresses the design and control of three phase inverters. Such inverters are

used to produce three-phase sinusoidal voltages and currents from a DC source. They

are critical for injecting power from renewable energy sources into the grid. This is

especially true since many of these sources of energy are DC sources (e.g. solar

photovoltaic) or need to be stored in DC batteries because they are intermittent (e.g. wind

and solar). Two classes of inverters are examined in this thesis. A control-centric design

procedure is presented for each class. The first class of inverters is simple in that they

consist of three decoupled subsystems. Such inverters are characterized by no mutual

inductance between the three phases. As such, no multivariable coupling is present and

decentralized single-input single-output (SISO) control theory suffices to generate

acceptable control designs. For this class of inverters several families of controllers are

addressed in order to examine command following as well as input disturbance and noise

attenuation specifications. The goal here is to illuminate fundamental tradeoffs. Such

tradeoffs include an improvement in the in-band command following and output

disturbance attenuation versus a deterioration in out-of-band noise attenuation.

A fundamental deficiency associated with such inverters is their large size. This can be

remedied by designing a smaller core. This naturally leads to the second class of inverters

considered in this work. These inverters are characterized by significant mutual

inductances and multivariable coupling. As such, SISO control theory is generally not

adequate and multiple-input multiple-output (MIMO) theory becomes essential for

controlling these inverters.
ContributorsSarkar, Aratrik (Author) / Rodriguez, Armando A. (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2015
158620-Thumbnail Image.png
Description
Physical activity helps in reducing the risk of many chronic diseases, and plays a key role in maintaining good health of an individual. Just Walk is an intensively adaptive physical activity intervention, which has been designed based on system identification and control engineering principles. The goal of Just Walk is

Physical activity helps in reducing the risk of many chronic diseases, and plays a key role in maintaining good health of an individual. Just Walk is an intensively adaptive physical activity intervention, which has been designed based on system identification and control engineering principles. The goal of Just Walk is to design interventions that are responsive to an individual's changing needs, and thus encourage the individual to increase the number of steps walked.

Regularization is widely used in the field of machine learning. The goal of this thesis is to see how classical system identification principles in combination with machine learning methods like regularization help towards getting improved model estimates for complex systems. Estimating individual behavioral models using traditional prediction error methods can be done using an order selection. However, this method is can be computationally expensive due to the extensive search performed on a large set of order combination. If order selection is not done properly, it can cause bias (low order) and variance (high order) issues. In such cases regularization plays an important role in addressing the bias-variance trade-off.

One of the most important applications of identifying individual behavioral models is to understand what factors impact most the behavior of the person. Here "factors" can be considered as inputs (designed or environmental) to the participant over the course of the study, and the "behavior" is the step count of the participant under study. This is done by estimating models with different input combinations and then seeing which combinations of inputs (influence behavior most) give the best model estimate (best describe behavior of the person). As a part of this thesis, it is studied how regularized models can give a better estimation of personalized behavioral models, for the Just Walk study, which can further help in designing personalized interventions.
ContributorsMandal, Tarunima (Author) / Rivera, Daniel E (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2020