This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

152273-Thumbnail Image.png
Description
This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended

This study focuses on state estimation of nonlinear discrete time systems with constraints. Physical processes have inherent in them, constraints on inputs, outputs, states and disturbances. These constraints can provide additional information to the estimator in estimating states from the measured output. Recursive filters such as Kalman Filters or Extended Kalman Filters are commonly used in state estimation; however, they do not allow inclusion of constraints in their formulation. On the other hand, computational complexity of full information estimation (using all measurements) grows with iteration and becomes intractable. One way of formulating the recursive state estimation problem with constraints is the Moving Horizon Estimation (MHE) approximation. Estimates of states are calculated from the solution of a constrained optimization problem of fixed size. Detailed formulation of this strategy is studied and properties of this estimation algorithm are discussed in this work. The problem with the MHE formulation is solving an optimization problem in each iteration which is computationally intensive. State estimation with constraints can be formulated as Extended Kalman Filter (EKF) with a projection applied to estimates. The states are estimated from the measurements using standard Extended Kalman Filter (EKF) algorithm and the estimated states are projected on to a constrained set. Detailed formulation of this estimation strategy is studied and the properties associated with this algorithm are discussed. Both these state estimation strategies (MHE and EKF with projection) are tested with examples from the literature. The average estimation time and the sum of square estimation error are used to compare performance of these estimators. Results of the case studies are analyzed and trade-offs are discussed.
ContributorsJoshi, Rakesh (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
155932-Thumbnail Image.png
Description
The purpose of this dissertation is to develop a design technique for fractional PID controllers to achieve a closed loop sensitivity bandwidth approximately equal to a desired bandwidth using frequency loop shaping techniques. This dissertation analyzes the effect of the order of a fractional integrator which is used as a

The purpose of this dissertation is to develop a design technique for fractional PID controllers to achieve a closed loop sensitivity bandwidth approximately equal to a desired bandwidth using frequency loop shaping techniques. This dissertation analyzes the effect of the order of a fractional integrator which is used as a target on loop shaping, on stability and performance robustness. A comparison between classical PID controllers and fractional PID controllers is presented. Case studies where fractional PID controllers have an advantage over classical PID controllers are discussed. A frequency-domain loop shaping algorithm is developed, extending past results from classical PID’s that have been successful in tuning controllers for a variety of practical systems.
ContributorsSaleh, Khalid M (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Si, Jennie (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
149506-Thumbnail Image.png
Description
A systematic top down approach to minimize risk and maximize the profits of an investment over a given period of time is proposed. Macroeconomic factors such as Gross Domestic Product (GDP), Consumer Price Index (CPI), Outstanding Consumer Credit, Industrial Production Index, Money Supply (MS), Unemployment Rate, and Ten-Year Treasury are

A systematic top down approach to minimize risk and maximize the profits of an investment over a given period of time is proposed. Macroeconomic factors such as Gross Domestic Product (GDP), Consumer Price Index (CPI), Outstanding Consumer Credit, Industrial Production Index, Money Supply (MS), Unemployment Rate, and Ten-Year Treasury are used to predict/estimate asset (sector ETF`s) returns. Fundamental ratios of individual stocks are used to predict the stock returns. An a priori known cash-flow sequence is assumed available for investment. Given the importance of sector performance on stock performance, sector based Exchange Traded Funds (ETFs) for the S&P; and Dow Jones are considered and wealth is allocated. Mean variance optimization with risk and return constraints are used to distribute the wealth in individual sectors among the selected stocks. The results presented should be viewed as providing an outer control/decision loop generating sector target allocations that will ultimately drive an inner control/decision loop focusing on stock selection. Receding horizon control (RHC) ideas are exploited to pose and solve two relevant constrained optimization problems. First, the classic problem of wealth maximization subject to risk constraints (as measured by a metric on the covariance matrices) is considered. Special consideration is given to an optimization problem that attempts to minimize the peak risk over the prediction horizon, while trying to track a wealth objective. It is concluded that this approach may be particularly beneficial during downturns - appreciably limiting downside during downturns while providing most of the upside during upturns. Investment in stocks during upturns and in sector ETF`s during downturns is profitable.
ContributorsChitturi, Divakar (Author) / Rodriguez, Armando (Thesis advisor) / Tsakalis, Konstantinos S (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2010
168443-Thumbnail Image.png
Description
Object sorting is a very common application especially in the industry setting, but this is a labor intensive and time consuming process and it proves to be challenging if done manually. Thanks to the rapid development in technology now almost all these object sorting tasks are partially or completely automated.

Object sorting is a very common application especially in the industry setting, but this is a labor intensive and time consuming process and it proves to be challenging if done manually. Thanks to the rapid development in technology now almost all these object sorting tasks are partially or completely automated. Image processing techniques are essential for the full operation of such a pick and place robot as it is responsible for perceiving the environment and to correctly identify ,classify and localize the different objects in it. In order for the robots to perform accurate object sorting with efficiency and stability this thesis discusses how different Deep learning based perception techniques can be used. In the era of Artificial Intelligence this sorting problem can be done more efficiently than the existing techniques. This thesis presents different image processing techniques and algorithms that can be used to perform object sorting efficiently. A comparison between three different deep learning based techniques is presented and their pros and cons are discussed. Furthermore this thesis also presents a comprehensive study about the kinematics and the dynamics involved in a 2 Degree of Freedom Robotic Manipulator .
ContributorsRanganathan, Pavithra (Author) / Rodriguez, Armando (Thesis advisor) / Si, Jennie (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021
158270-Thumbnail Image.png
Description
This work is concerned with how best to reconstruct images from limited angle tomographic measurements. An introduction to tomography and to limited angle tomography will be provided and a brief overview of the many fields to which this work may contribute is given.

The traditional tomographic image reconstruction approach involves

This work is concerned with how best to reconstruct images from limited angle tomographic measurements. An introduction to tomography and to limited angle tomography will be provided and a brief overview of the many fields to which this work may contribute is given.

The traditional tomographic image reconstruction approach involves Fourier domain representations. The classic Filtered Back Projection algorithm will be discussed and used for comparison throughout the work. Bayesian statistics and information entropy considerations will be described. The Maximum Entropy reconstruction method will be derived and its performance in limited angular measurement scenarios will be examined.

Many new approaches become available once the reconstruction problem is placed within an algebraic form of Ax=b in which the measurement geometry and instrument response are defined as the matrix A, the measured object as the column vector x, and the resulting measurements by b. It is straightforward to invert A. However, for the limited angle measurement scenarios of interest in this work, the inversion is highly underconstrained and has an infinite number of possible solutions x consistent with the measurements b in a high dimensional space.

The algebraic formulation leads to the need for high performing regularization approaches which add constraints based on prior information of what is being measured. These are constraints beyond the measurement matrix A added with the goal of selecting the best image from this vast uncertainty space. It is well established within this work that developing satisfactory regularization techniques is all but impossible except for the simplest pathological cases. There is a need to capture the "character" of the objects being measured.

The novel result of this effort will be in developing a reconstruction approach that will match whatever reconstruction approach has proven best for the types of objects being measured given full angular coverage. However, when confronted with limited angle tomographic situations or early in a series of measurements, the approach will rely on a prior understanding of the "character" of the objects measured. This understanding will be learned by a parallel Deep Neural Network from examples.
ContributorsDallmann, Nicholas A. (Author) / Tsakalis, Konstantinos (Thesis advisor) / Hardgrove, Craig (Committee member) / Rodriguez, Armando (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2020
161364-Thumbnail Image.png
Description
The Inverted Pendulum on a Cart is a classical control theory problem that helps understand the importance of feedback control systems for a coupled plant. In this study, a custom built pendulum system is coupled with a linearly actuated cart and a control system is designed to show the stability

The Inverted Pendulum on a Cart is a classical control theory problem that helps understand the importance of feedback control systems for a coupled plant. In this study, a custom built pendulum system is coupled with a linearly actuated cart and a control system is designed to show the stability of the pendulum. The three major objectives of this control system are to swing up the pendulum, balance the pendulum in the inverted position (i.e. $180^\circ$), and maintain the position of the cart. The input to this system is the translational force applied to the cart using the rotation of the tires. The main objective of this thesis is to design a control system that will help in balancing the pendulum while maintaining the position of the cart and implement it in a robot. The pendulum is made free rotating with the help of ball bearings and the angle of the pendulum is measured using an Inertial Measurement Unit (IMU) sensor. The cart is actuated by two Direct Current (DC) motors and the position of the cart is measured using encoders that generate pulse signals based on the wheel rotation. The control is implemented in a cascade format where an inner loop controller is used to stabilize and balance the pendulum in the inverted position and an outer loop controller is used to control the position of the cart. Both the inner loop and outer loop controllers follow the Proportional-Integral-Derivative (PID) control scheme with some modifications for the inner loop. The system is first mathematically modeled using the Newton-Euler first principles method and based on this model, a controller is designed for specific closed-loop parameters. All of this is implemented on hardware with the help of an Arduino Due microcontroller which serves as the main processing unit for the system.
ContributorsNamasivayam, Vignesh (Author) / Tsakalis, Konstantinos (Thesis advisor) / Rodriguez, Armando (Committee member) / Si, Jennie (Committee member) / Shafique, Md. Ashfaque Bin (Committee member) / Arizona State University (Publisher)
Created2021