This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153096-Thumbnail Image.png
Description
Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for

Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for adaptive sequential behavioral interventions using dynamical systems modeling, control engineering principles and formal optimization methods. A novel gestational weight gain (GWG) intervention involving multiple intervention components and featuring a pre-defined, clinically relevant set of sequence rules serves as an excellent example of a sequential behavioral intervention; it is examined in detail in this research.

 

A comprehensive dynamical systems model for the GWG behavioral interventions is developed, which demonstrates how to integrate a mechanistic energy balance model with dynamical formulations of behavioral models, such as the Theory of Planned Behavior and self-regulation. Self-regulation is further improved with different advanced controller formulations. These model-based controller approaches enable the user to have significant flexibility in describing a participant's self-regulatory behavior through the tuning of controller adjustable parameters. The dynamic simulation model demonstrates proof of concept for how self-regulation and adaptive interventions influence GWG, how intra-individual and inter-individual variability play a critical role in determining intervention outcomes, and the evaluation of decision rules.

 

Furthermore, a novel intervention decision paradigm using Hybrid Model Predictive Control framework is developed to generate sequential decision policies in the closed-loop. Clinical considerations are systematically taken into account through a user-specified dosage sequence table corresponding to the sequence rules, constraints enforcing the adjustment of one input at a time, and a switching time strategy accounting for the difference in frequency between intervention decision points and sampling intervals. Simulation studies illustrate the potential usefulness of the intervention framework.

The final part of the dissertation presents a model scheduling strategy relying on gain-scheduling to address nonlinearities in the model, and a cascade filter design for dual-rate control system is introduced to address scenarios with variable sampling rates. These extensions are important for addressing real-life scenarios in the GWG intervention.
ContributorsDong, Yuwen (Author) / Rivera, Daniel E (Thesis advisor) / Dai, Lenore (Committee member) / Forzani, Erica (Committee member) / Rege, Kaushal (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2014
158620-Thumbnail Image.png
Description
Physical activity helps in reducing the risk of many chronic diseases, and plays a key role in maintaining good health of an individual. Just Walk is an intensively adaptive physical activity intervention, which has been designed based on system identification and control engineering principles. The goal of Just Walk is

Physical activity helps in reducing the risk of many chronic diseases, and plays a key role in maintaining good health of an individual. Just Walk is an intensively adaptive physical activity intervention, which has been designed based on system identification and control engineering principles. The goal of Just Walk is to design interventions that are responsive to an individual's changing needs, and thus encourage the individual to increase the number of steps walked.

Regularization is widely used in the field of machine learning. The goal of this thesis is to see how classical system identification principles in combination with machine learning methods like regularization help towards getting improved model estimates for complex systems. Estimating individual behavioral models using traditional prediction error methods can be done using an order selection. However, this method is can be computationally expensive due to the extensive search performed on a large set of order combination. If order selection is not done properly, it can cause bias (low order) and variance (high order) issues. In such cases regularization plays an important role in addressing the bias-variance trade-off.

One of the most important applications of identifying individual behavioral models is to understand what factors impact most the behavior of the person. Here "factors" can be considered as inputs (designed or environmental) to the participant over the course of the study, and the "behavior" is the step count of the participant under study. This is done by estimating models with different input combinations and then seeing which combinations of inputs (influence behavior most) give the best model estimate (best describe behavior of the person). As a part of this thesis, it is studied how regularized models can give a better estimation of personalized behavioral models, for the Just Walk study, which can further help in designing personalized interventions.
ContributorsMandal, Tarunima (Author) / Rivera, Daniel E (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2020