This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

150298-Thumbnail Image.png
Description
Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities

Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an external area are first demarcated. Then the coherent generators in the external area are aggregated and replaced by equivalenced models, followed by network reduction and load aggregation. In this process, an improperly defined retained area can result in detrimental impacts on the effectiveness of the equivalents in preserving the dynamic characteristics of the original unreduced system. In this dissertation, a comprehensive approach has been proposed to determine an appropriate retained area boundary by including the critical generators in the external area that are tightly coupled with the initial retained area. Further-more, a systematic approach has also been investigated to efficiently predict the variation in generator slow coherency behavior when the system operating condition is subject to change. Based on this determination, the critical generators in the external area that are tightly coherent with the generators in the initial retained area are retained, resulting in a new retained area boundary. Finally, a novel hybrid dynamic equivalent, consisting of both a coherency-based equivalent and an artificial neural network (ANN)-based equivalent, has been proposed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the retained area boundary buses, and it is designed to compensate for the discrepancy between the full system and the conventional coherency-based equivalent. The approaches developed have been validated on a large portion of the Western Electricity Coordinating Council (WECC) system and on a test case including a significant portion of the eastern interconnection.
ContributorsMa, Feng (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
151242-Thumbnail Image.png
Description
Photovoltaic (PV) power generation has the potential to cause a significant impact on power system reliability since its total installed capacity is projected to increase at a significant rate. PV generation can be described as an intermittent and variable resource because its production is influenced by ever-changing environmental conditions. The

Photovoltaic (PV) power generation has the potential to cause a significant impact on power system reliability since its total installed capacity is projected to increase at a significant rate. PV generation can be described as an intermittent and variable resource because its production is influenced by ever-changing environmental conditions. The study in this dissertation focuses on the influence of PV generation on trans-mission system reliability. This is a concern because PV generation output is integrated into present power systems at various voltage levels and may significantly affect the power flow patterns. This dissertation applies a probabilistic power flow (PPF) algorithm to evaluate the influence of PV generation uncertainty on transmission system perfor-mance. A cumulant-based PPF algorithm suitable for large systems is used. Correlation among adjacent PV resources is considered. Three types of approximation expansions based on cumulants namely Gram-Charlier expansion, Edgeworth expansion and Cor-nish-Fisher expansion are compared, and their properties, advantages and deficiencies are discussed. Additionally, a novel probabilistic model of PV generation is developed to obtain the probability density function (PDF) of the PV generation production based on environmental conditions. Besides, this dissertation proposes a novel PPF algorithm considering the conven-tional generation dispatching operation to balance PV generation uncertainties. It is pru-dent to include generation dispatch in the PPF algorithm since the dispatching strategy compensates for PV generation injections and influences the uncertainty results. Fur-thermore, this dissertation also proposes a probabilistic optimal power dispatching strat-egy which considers uncertainty problems in the economic dispatch and optimizes the expected value of the total cost with the overload probability as a constraint. The proposed PPF algorithm with the three expansions is compared with Monte Carlo simulations (MCS) with results for a 2497-bus representation of the Arizona area of the Western Electricity Coordinating Council (WECC) system. The PDFs of the bus voltages, line flows and slack bus production are computed, and are used to identify the confidence interval, the over limit probability and the expected over limit time of the ob-jective variables. The proposed algorithm is of significant relevance to the operating and planning studies of the transmission systems with PV generation installed.
ContributorsFan, Miao (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald Thomas (Committee member) / Ayyanar, Raja (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
151214-Thumbnail Image.png
Description
In electric power systems, phasor measurement units (PMUs) are capable of providing synchronized voltage and current phasor measurements which are superior to conventional measurements collected by the supervisory control and data acquisition (SCADA) system in terms of resolution and accuracy. These measurements are known as synchrophasor measurements. Considerable research work

In electric power systems, phasor measurement units (PMUs) are capable of providing synchronized voltage and current phasor measurements which are superior to conventional measurements collected by the supervisory control and data acquisition (SCADA) system in terms of resolution and accuracy. These measurements are known as synchrophasor measurements. Considerable research work has been done on the applications of PMU measurements based on the as-sumption that a high level of accuracy is obtained in the field. The study in this dissertation is conducted to address the basic issue concerning the accuracy of actual PMU measurements in the field. Synchronization is one of the important features of PMU measurements. However, the study presented in this dissertation reveals that the problem of faulty synchronization between measurements with the same time stamps from different PMUs exists. A Kalman filter model is proposed to analyze and calcu-late the time skew error caused by faulty synchronization. In order to achieve a high level of accuracy of PMU measurements, inno-vative methods are proposed to detect and identify system state changes or bad data which are reflected by changes in the measurements. This procedure is ap-plied as a key step in adaptive Kalman filtering of PMU measurements to over-come the insensitivity of a conventional Kalman filter. Calibration of PMU measurements is implemented in specific PMU instal-lation scenarios using transmission line (TL) parameters from operation planning data. The voltage and current correction factors calculated from the calibration procedure indicate the possible errors in PMU measurements. Correction factors can be applied in on-line calibration of PMU measurements. A study is conducted to address an important issue when integrating PMU measurements into state estimation. The reporting rate of PMU measurements is much higher than that of the measurements collected by the SCADA. The ques-tion of how to buffer PMU measurements is raised. The impact of PMU meas-urement buffer length on state estimation is discussed. A method based on hy-pothesis testing is proposed to determine the optimal buffer length of PMU meas-urements considering the two conflicting features of PMU measurements, i. e. un-certainty and variability. Results are presented for actual PMU synchrophasor measurements.
ContributorsZhang, Qing (Author) / Heydt, Gerald (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
149447-Thumbnail Image.png
Description
An advantage of doubly fed induction generators (DFIGs) as compared to conventional fixed speed wind turbine generators is higher efficiency. This higher efficiency is achieved due to the ability of the DFIG to operate near its optimal turbine efficiency over a wider range of wind speeds through variable speed operation.

An advantage of doubly fed induction generators (DFIGs) as compared to conventional fixed speed wind turbine generators is higher efficiency. This higher efficiency is achieved due to the ability of the DFIG to operate near its optimal turbine efficiency over a wider range of wind speeds through variable speed operation. This is achieved through the application of a back-to-back converter that tightly controls the rotor current and allows for asynchronous operation. In doing so, however, the power electronic converter effectively decouples the inertia of the turbine from the system. Hence, with the increase in penetration of DFIG based wind farms, the effective inertia of the system will be reduced. With this assertion, the present study is aimed at identifying the systematic approach to pinpoint the impact of increased penetration of DFIGs on a large realistic system. The techniques proposed in this work are tested on a large test system representing the Midwestern portion of the U.S. Interconnection. The electromechanical modes that are both detrimentally and beneficially affected by the change in inertia are identified. The combination of small-signal stability analysis coupled with the large disturbance analysis of exciting the mode identified is found to provide a detailed picture of the impact on the system. The work is extended to develop suitable control strategies to mitigate the impact of significant DFIG penetration on a large power system. Supplementary control is developed for the DFIG power converters such that the effective inertia contributed by these wind generators to the system is increased. Results obtained on the large realistic power system indicate that the frequency nadir following a large power impact is effectively improved with the proposed control strategy. The proposed control is also validated against sudden wind speed changes in the form of wind gusts and wind ramps. The beneficial impact in terms of damping power system oscillations is observed, which is validated by eigenvalue analysis. Another control mechanism is developed aiming at designing the power system stabilizer (PSS) for a DFIG similar to the PSS of synchronous machines. Although both the supplementary control strategies serve the purpose of improving the damping of the mode with detrimental impact, better damping performance is observed when the DFIG is equipped with both the controllers.
ContributorsGautam, Durga (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Farmer, Richard (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2010