This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151937-Thumbnail Image.png
Description
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3,

Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonics applications. Er compounds could potentially solve this problem since they contain much higher Er density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor quality of crystals produced by various methods of thin film growth and deposition. This dissertation explores a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl ) in the nanowire form, which facilitates the growth of high quality single crystals. Growth methods for such single crystal ECS nanowires have been established. Various structural and optical characterizations have been carried out. The high crystal quality of ECS material leads to a long lifetime of the first excited state of Er3+ ions up to 1 ms at Er density higher than 1022 cm-3. This Er lifetime-density product was found to be the largest among all Er containing materials. A unique integrating sphere method was developed to measure the absorption cross section of ECS nanowires from 440 to 1580 nm. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement from a single ECS wire. It was estimated that such large signal enhancement can overcome the absorption to result in a net material gain, but not sufficient to compensate waveguide propagation loss. In order to suppress the upconversion process in ECS, Ytterbium (Yb) and Yttrium (Y) ions are introduced as substituent ions of Er in the ECS crystal structure to reduce Er density. While the addition of Yb ions only partially succeeded, erbium yttrium chloride silicate (EYCS) with controllable Er density was synthesized successfully. EYCS with 30 at. % Er was found to be the best. It shows the strongest PL emission at 1.5 μm, and thus can be potentially used as a high gain material.
ContributorsYin, Leijun (Author) / Ning, Cun-Zheng (Thesis advisor) / Chamberlin, Ralph (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013
161881-Thumbnail Image.png
Description
High-pressure science has been advancing rapidly in the past several decades due to its potential to access bond engineering and lattice reconstruction. Thanks to the development of pressure devices and advanced in-situ probing technics, it is possible to probe structural phase transitions as well as materials’ optical, electrical, and magnetic

High-pressure science has been advancing rapidly in the past several decades due to its potential to access bond engineering and lattice reconstruction. Thanks to the development of pressure devices and advanced in-situ probing technics, it is possible to probe structural phase transitions as well as materials’ optical, electrical, and magnetic properties under extreme pressure, which will in turn help explain new emerging materials’ phases and phenomena. As one of the most popular high-pressure devices, the diamond anvil cell has been used to control the crystal structure and interatomic spacing of materials by applying high pressure while accessing their material properties in-situ. In this dissertation, advanced spectroscopy techniques combined with diamond anvil cells are used to help determine how emergent quantum materials behave under high pressure. A comprehensive summary is offered on the synthesis, characterization, and high-pressure studies of various low-dimensional material systems, such as 2D Ruddlesden-Popper hybrid lead bromide perovskites (CH3(CH2)3NH3)2(CH3NH3)nPbnBr3n+1, (n = 1 and n = 2); guanidinium based lead iodides (2D Gua2PbI4 and 1D GuaPbI3), in which researchers discovered extraordinary luminescent properties and extremely high quantum conversion efficiency; 2D Janus MoSSe and WSSe monolayers, in which the mirror symmetry is broken and an electrical field is built in due to different electronegativity of the top and bottom atom layers; and 2D tellurene, which possess a large potential application in optoelectronic devices and sensors. In combination with the density function theory simulations of such collaborators as Dr. Can Ataca (organic–inorganic halide perovskite), Dr. Arunima K. Singh (tellurene), and Dr. Houlong Zhuang (Janus), this study offers comprehensive and detailed insights into the fundamental physics and mechanics of how crystal structure and band structure evolve at high pressure, discovering new phases, understanding the phase transition mechanism, and determining optoelectronic device applications.
ContributorsLi, Han (Author) / Tongay, Sefaattin ST (Thesis advisor) / Botana, Antia Sanchez (Committee member) / Singh, Arunima K. (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2021