This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156166-Thumbnail Image.png
Description
The electronic states of semiconductor interfaces have significant importance for semiconductor device performance, especially due to the continuing miniaturization of device technology.

The application of ultra high vacuum (UHV) enables the preparation and characterization of fresh and cleaned interfaces. In a UHV environment, photoemission spectroscopy (PES) provides a non-destructive method to

The electronic states of semiconductor interfaces have significant importance for semiconductor device performance, especially due to the continuing miniaturization of device technology.

The application of ultra high vacuum (UHV) enables the preparation and characterization of fresh and cleaned interfaces. In a UHV environment, photoemission spectroscopy (PES) provides a non-destructive method to measure the electronic band structure, which is a crucial component of interface properties.

In this dissertation, three semiconductor interfaces were studies to understand different effects on electronic states. The interfaces studied were freshly grown or pre-treated under UHV. Then in-situ PES measurements, including x-ray photoemission spectroscopy (XPS) and ultra-violet photoemission spectroscopy (UPS), were conducted to obtain electronic states information.

First, the CdTe/InSb (100) heterointerface was employed as a model interface for II-VI and III-V heterojunctions. It was suggested that an interface layer formed, which consisted of In-Te bonding. The non-octal bonding between In and Te atoms has donor-like behavior, which was proposed to result in an electron accumulation layer in InSb. A type-I heterointerface was observed. Second, Cu/ZnO interfaces were studied to understand the interface bonding and the role of polarization on ZnO interfaces. It was shown that on O-face ZnO (0001) and PEALD ZnO, copper contacts had ohmic behavior. However, on Zn-face ZnO (0001), a 0.3 eV Schottky barrier height was observed. The lower than expected barrier heights were attributed to oxygen vacancies introduced by Cu-O bonding during interface formation. In addition, it is suggested that the different barrier heights on two sides of ZnO (0001) are caused by the different behavior for the ZnO (0001) faces. Last, a pulse mode deposition method was applied for P-doped diamond growth on (100) diamond surfaces. Pretreatment effects were studied. It is suggested that an O/H plasma treatment or a short period of H-plasma and CH4/H2 plasma could yield a higher growth rate. PES measurements were conducted on H-terminated intrinsic diamond surface and P-doped/intrinsic diamond (100) interfaces. It was suggested that electronic states near the valence band maximum caused Fermi level pinning effects, independent of the diamond doping.
ContributorsWang, Xingye (Author) / Nemanich, Robert J (Thesis advisor) / Chan, Candace (Committee member) / Ponce, Fernando (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2018
161590-Thumbnail Image.png
Description
In this dissertation, far UV spectroscopy is applied to investigate the optical properties of dielectric thin films grown by atomic layer deposition. The far UV (120 – 200 nm) reflectance for several dielectric oxides and fluorides, including AlF3, Al2O3, Ga2O3, HfO2, and SiO2, was measured at variable angles and thicknesses.

In this dissertation, far UV spectroscopy is applied to investigate the optical properties of dielectric thin films grown by atomic layer deposition. The far UV (120 – 200 nm) reflectance for several dielectric oxides and fluorides, including AlF3, Al2O3, Ga2O3, HfO2, and SiO2, was measured at variable angles and thicknesses. Multiple optical calculation methods were developed for the accurate determination of the optical constants from the reflectance. The deduced optical constants were used for optical designs, such as high-reflectivity coatings, and Fabry-Perot bandpass interference filters. Three filters were designed for use at 157 nm, 212 nm, and 248 nm wavelengths, based on multilayer structures consisting of SiO2, Al2O3, HfO2, and AlF3. A thorough error analysis was made to quantify the non-idealities of the optical performance for the designed filters. Far UV spectroscopy was also applied to analyze material mixtures, such as AlF3/Al and h-BN/c-BN mixtures. Using far UV spectroscopy, different phases in the composite can be distinguished, and the volume concentration of each constituent can be determined. A middle UV reflective coating based on A2O3 and AlF3 was fabricated and characterized. The reflective coating has a smooth surface (?? < 1 nm), and a peak reflectance of 25 – 30 % at a wavelength of 196 nm. The peak reflectance deviated from the design, and an analysis of the AlF3 layer prepared by plasma-enhanced atomic layer deposition (PEALD) indicated the presence of Al-rich clusters, which were associated with the UV absorption. Complementary techniques, such as spectroscopic ellipsometry, and X-ray photoelectron spectroscopy, were used to verify the results from far UV spectroscopy. In conclusion, this Dissertation demonstrated the use of in-situ far UV spectroscopy to investigate the optical properties of thin films at short wavelengths. This work extends the application of far UV spectroscopy to ultrawide bandgap semiconductors and insulators. This work supports a path forward for far UV optical filters and devices. Various errors have been discussed with solutions proposed for future research of methods and materials for UV optics.
ContributorsHuang, Zhiyu (Author) / Nemanich, Robert (Thesis advisor) / Ponce, Fernando (Committee member) / Menéndez, Jose (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2021