This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

149792-Thumbnail Image.png
Description
Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are studied via a variety of methods. The first microelectronic devices

Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are studied via a variety of methods. The first microelectronic devices from GeSn films were fabricated using newly developed CMOS-compatible protocols, and the devices were characterized with respect to their electrical properties and optical response. The detectors were found to have a detection range that extends into the near-IR, and the detection edge is found to shift to longer wavelengths with increasing Sn content, mainly due to the compositional dependence of the direct band gap E0. With only 2 % Sn, all of the telecommunication bands are covered by a single detector. Room temperature photoluminescence was observed from GeSn films with Sn content up to 4 %. The peak wavelength of the emission was found to shift to lower energies with increasing Sn content, corresponding to the decrease in the direct band gap E0 of the material. An additional peak in the spectrum was assigned to the indirect band gap. The separation between the direct and indirect peaks was found to decrease with increasing Sn concentration, as expected. Electroluminescence was also observed from Ge/Si and Ge0.98Sn0.02 photodiodes under forward bias, and the luminescence spectra were found to match well with the observed photoluminescence spectra. A theoretical expression was developed for the luminescence due to the direct band gap and fit to the data.
ContributorsMathews, Jay (Author) / Menéndez, Jose (Thesis advisor) / Kouvetakis, John (Thesis advisor) / Drucker, Jeffery (Committee member) / Chizmeshya, Andrew (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2011
150232-Thumbnail Image.png
Description
Raman scattering from Ge-Si core-shell nanowires is investigated theoretically and experimentally. A theoretical model that makes it possible to extract quantitative strain information from the measured Raman spectra is presented for the first time. Geometrical and elastic simplifications are introduced to keep the model analytical, which facilitates comparison with experimental

Raman scattering from Ge-Si core-shell nanowires is investigated theoretically and experimentally. A theoretical model that makes it possible to extract quantitative strain information from the measured Raman spectra is presented for the first time. Geometrical and elastic simplifications are introduced to keep the model analytical, which facilitates comparison with experimental results. In particular, the nanowires are assumed to be cylindrical, and their elastic constants isotropic. The simple analytical model is subsequently validated by performing numerical calculations using realistic nanowire geometries and cubic, anisotropic elastic constants. The comparison confirms that the analytic model is an excellent approximation that greatly facilitates quantitative Raman work, with expected errors in the strain determination that do not exceed 10%. Experimental Raman spectra of a variety of core-shell nanowires are presented, and the strain in the nanowires is assessed using the models described above. It is found that all structures present a significant degree of strain relaxation relative to ideal, fully strained Ge-Si core-shell structures. The analytical models are modified to quantify this strain relaxation.
ContributorsSingh, Rachna (Author) / Menéndez, Jose (Thesis advisor) / Drucker, Jeffery (Committee member) / Ponce, Fernando (Committee member) / Tsen, Kong-Thon (Committee member) / Bennett, Peter (Committee member) / Arizona State University (Publisher)
Created2011
187414-Thumbnail Image.png
Description
Rare-earth tritellurides (RTe3) are two-dimensional materials with unique quantum properties, ideal for investigating quantum phenomena and applications in supercapacitors, spintronics, and twistronics. This dissertation examines the electronic, magnetic, and phononic properties of the RTe3 family, exploring how these can be controlled using chemical pressure, cationic alloying, and external pressure.The impact

Rare-earth tritellurides (RTe3) are two-dimensional materials with unique quantum properties, ideal for investigating quantum phenomena and applications in supercapacitors, spintronics, and twistronics. This dissertation examines the electronic, magnetic, and phononic properties of the RTe3 family, exploring how these can be controlled using chemical pressure, cationic alloying, and external pressure.The impact of chemical pressure on RTe3 phononic properties was investigated through noninvasive micro-Raman spectroscopy, demonstrating the potential of optical measurements for determining charge density wave (CDW) transition temperatures. Cationic alloying studies showed seamless tuning of CDW transition temperatures by modifying lattice constants and revealed complex magnetism in alloyed RTe3 with multiple magnetic transitions. A comprehensive external pressure study examined the influence of spacing between RTe3 layers on phononic and CDW properties across the RTe3 family. Comparisons between different RTe3 materials showed LaTe3, with the largest thermodynamic equilibrium interlayer spacing (smallest chemical pressure), has the most stable CDW phases at high pressures. Conversely, CDW phases in late RTe3 systems with larger internal chemical pressures were more easily suppressed by applied pressure. The dissertation also investigated Schottky barrier realignment at RTe3/semiconductor interfaces induced by CDW transitions, revealing changes in Schottky barrier height and ideality factor around the CDW transition temperature. This indicates that chemical potential changes of RTe3 below the CDW transition temperature influence Schottky junction properties, enabling CDW state probing through interface property measurements. A detailed experimental and theoretical analysis of the oxidation process of RTe3 compounds was performed, which revealed faster degradation in late RTe3 systems. Electronic property changes, like CDW transition temperature and chemical potential, are observed as degradation progresses. Quantum mechanical simulations suggested that degradation primarily results from strong oxidizing reactions with O2 molecules, while humidity (H2O) plays a negligible role unless Te vacancies exist. Lastly, the dissertation establishes a large-area thin film deposition at relatively low temperatures using a soft sputtering technique. While focused on MoTe2 deposition, this technique may also apply to RTe3 thin film deposition. Overall, this dissertation expands the understanding of the fundamental properties of RTe3 materials and lays the groundwork for potential device applications.
ContributorsYumigeta, Kentaro (Author) / Tongay, Sefaattin (Thesis advisor) / Ponce, Fernando (Committee member) / Drucker, Jeffery (Committee member) / Erten, Onur (Committee member) / Arizona State University (Publisher)
Created2023