This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156516-Thumbnail Image.png
Description
This research has studied remote plasma enhanced atomic layer deposited Ga2O3 thin films with gallium acetylacetonate (Ga(acac)3) as Ga precursor and remote inductively coupled oxygen plasma as oxidizer. The Ga2O3 thin films were mainly considered as passivation layers on GaN. Growth conditions including Ga(acac)3 precursor pulse time, O2 plasma pulse

This research has studied remote plasma enhanced atomic layer deposited Ga2O3 thin films with gallium acetylacetonate (Ga(acac)3) as Ga precursor and remote inductively coupled oxygen plasma as oxidizer. The Ga2O3 thin films were mainly considered as passivation layers on GaN. Growth conditions including Ga(acac)3 precursor pulse time, O2 plasma pulse time, N2 purge time and deposition temperature were investigated and optimized on phosphorus doped Si (100) wafer to achieve a saturated self-limiting growth. A temperature growth window was observed between 150 ℃ and 320 ℃. Ga precursor molecules can saturate on the substrate surface in 0.6 s in one cycle and the plasma power saturates at 150 W. A growth rate of 0.31 Å/cycle was observed for PEALD Ga2O3. Since the study is devoted towards Ga2O3 working as passivation layer on GaN, the band alignment of Ga2O3 on GaN were further determined with X-ray Photoemission Spectroscopy and Ultraviolet Photoemission Spectroscopy. Two models are often used to decide the band alignment of a heterojunction: the electron affinity model assumes the heterojunction aligns at the vacuum level, and the charge neutrality level model (CNL) which considers the presence of an interface dipole. The conduction band offset (CBO), valence band offset (VBO) and band bending (BB) of PEALD Ga2O3 thin films on GaN were 0.1 ±0.2 eV, 1.0±0.2 eV and 0.3 eV respectively. Type-I band alignments were determined. Further study including using PEALD Ga2O3 as passivation layer on GaN MOS gate and applying atomic layer etching to GaN was described.
ContributorsHao, Mei (Author) / Nemanich, Robert J. (Thesis advisor) / Ponce, Fernando (Committee member) / Chamberlin, Ralph (Committee member) / Chowdhury, Srabanti (Committee member) / Arizona State University (Publisher)
Created2018
153758-Thumbnail Image.png
Description
GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result from surface and interface states on GaN and AlGaN. This dissertation, therefore, examined these electronic states, focusing on the following

GaN and AlGaN have shown great potential in next-generation power and RF electronics. However, these devices are limited by reliability issues such as leakage current and current collapse that result from surface and interface states on GaN and AlGaN. This dissertation, therefore, examined these electronic states, focusing on the following two points:

First, the surface electronic state configuration was examined with regards to the polarization bound 1013 charges/cm2 that increases with aluminum content. This large bound charge requires compensation either externally by surface states or internally by the space charge regions as relates to band bending. In this work, band bending was measured after different surface treatments of GaN and AlGaN to determine the effects of specific surface states on the electronic state configuration. Results showed oxygen-terminated N-face GaN, Ga-face GaN, and Ga-face Al0.25Ga0.75N surface were characterized by similar band bending regardless of the polarization bound charge, suggesting a Fermi level pinning state ~0.4-0.8 eV below the conduction band minimum. On oxygen-free Ga-face GaN, Al0.15Ga0.85N, Al0.25Ga0.75N, and Al0.35Ga0.65N, band bending increased slightly with aluminum content and thus did not exhibit the same pinning behavior; however, there was still significant compensating charge on these surfaces (~1013 charges/cm2). This charge is likely related to nitrogen vacancies and/or gallium dangling bonds.

In addition, this wozrk investigated the interface electronic state configuration of dielectric/GaN and AlGaN interfaces with regards to deposition conditions and aluminum content. Specifically, oxygen plasma-enhanced atomic layer deposited (PEALD) was used to deposit SiO2. Growth temperature was shown to influence the film quality, where room temperature deposition produced the highest quality films in terms of electrical breakdown. In addition, the valence band offsets (VBOs) appeared to decrease with the deposition temperature, which likely related to an electric field across the Ga2O3 interfacial layer. VBOs were also determined with respect to aluminum content at the PEALD-SiO2/AlxGa1-xN interface, giving 3.0, 2.9, 2.9, and 2.8 eV for 0%, 15%, 25%, and 35% aluminum content, respectively—with corresponding conduction band offsets of 2.5, 2.2, 1.9, and 1.8 eV. This suggests the largest difference manifests in the conduction band, which is in agreement with the charge neutrality level model.
ContributorsEller, Brianna (Author) / Nemanich, Robert J (Thesis advisor) / Chowdhury, Srabanti (Committee member) / McCartney, Martha (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2015