This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171558-Thumbnail Image.png
Description
Megapolitan cities have emerged due to unprecedented urban migration. These changes strain urban resources, especially water distribution and treatment systems. The recent rise of Legionella cases linked to water distribution systems highlights this issue.Bacterial growth and biofilm formation are influenced by factors, such as type and concentration of residual disinfectant,

Megapolitan cities have emerged due to unprecedented urban migration. These changes strain urban resources, especially water distribution and treatment systems. The recent rise of Legionella cases linked to water distribution systems highlights this issue.Bacterial growth and biofilm formation are influenced by factors, such as type and concentration of residual disinfectant, pipe material, water temperature. Experiments were conducted in identical model water distribution systems (WDSs) constructed of three different pipe materials: galvanized steel, copper, and cross-linked polyethylene (PEX) operated under a continuous flow rate of 15 L/min. Each model WDS includes 11 steel coupons screwed to the water distribution pipes. City of Tempe (Arizona) municipal water was used in the experimentation, with no nutrients added. Following biofilm growth, coupons were removed and processed by scrubbing biofilm into phosphate-buffered saline (PBS). Reasoner's 2A (R2A), Trypticase Soy Agar (TSA), Brilliant, and buffered charcoal yeast extract (BCYE) agar media were used to examine biofilm samples for heterotrophic plate counts (HPC), metabolically active bacteria, E coli, and Legionella. Simultaneously, water samples from the reservoirs of model WDSs were also collected and examined for the same bacteria.Next, an electrochlorination cell maintained free chlorine residuals in unheated PEX and copper model WDSs. These two systems maintained free chlorine residuals for one week and evaluated biofilm and bacterial kinetics. Higher water temperature increased biofilm development. Bacterial counts in biofilms were higher on new (fresh) coupons compared to the old coupons. Heterotrophic and metabolically active bacteria behaved similarly. Only control and heating systems in copper water reservoirs have Legionella spp. Biofilms formed less on copper systems than steel and PEX systems. Initially, PEX had more HPC than copper. After electrochlorination, HPC concentration in the PEX system rapidly declined to non-detect, whereas in the copper system dropped to 0.54 log CFU/mL. Thus, higher temperature increases biofilm growth on all pipe materials and reservoirs bacterial concentration. Electrochlorination is a potential biofilm and microbial disinfection method. This thesis topic investigated how these parameters affect the model distribution system bacterial populations and biofilm growth.
ContributorsKolahi Kouchaki, Bita (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2022
190824-Thumbnail Image.png
Description
Water quality assessment is essential for maintaining healthy ecosystems and protecting human health. Data interrogation and exploratory data analysis techniques are used to analyze the spatial and temporal variability of water quality parameters, identifying correlations, and to better understand the factors that impacts microbial and chemical quality of water. The

Water quality assessment is essential for maintaining healthy ecosystems and protecting human health. Data interrogation and exploratory data analysis techniques are used to analyze the spatial and temporal variability of water quality parameters, identifying correlations, and to better understand the factors that impacts microbial and chemical quality of water. The seasonal dynamics of microbiome in surface waters were investigated to identify the factors driving these dynamics. Initial investigation analyzed two decades of regional water quality data from 20 various locations in Central Arizona, USA. Leveraging advanced data science techniques, the study uncovered correlations between crucial parameters, including dissolved organic carbon (DOC), ultraviolet absorbance (UVA), and specific ultraviolet absorbance (SUVA). These findings provide foundational insights into the dynamic of overall water quality. A comprehensive 12-month surface water sample collection and study was conducted to investigate potential bias in bacterial detection using EPA approved Membrane Filtration (MF) technique. The results underscore that while MF excels in recovering bacteria of public health significance, it exhibits biases, particularly against small and spore-forming bacteria and Archaea, such as Bacilli, Mollicutes, Methylacidiphilae, and Parvarchaea. This emphasizes the importance of complementing standard microbiology approaches to mitigate technological biases and enhance the accuracy of microbial water quality testing, especially for emerging pathogens. Furthermore, a complementary study of microbial dynamics within a model drinking water distribution systems (DWDSs) using treated water from the same source water as the above study. The influence of pipe material and water temperature on the microbiome and trace element composition was investigated. The research unveiled a preferential link between pipe material and trace elements, with water temperature significantly impacting the microbiome to a higher degree than the chemical composition of water. Notably, Legionellaceae and Mycobacteriaceae were found to be prevalent in warmer waters, highlighting the substantial influence of water temperature on the microbiome, surpassing that of pipe material. These studies provide comprehensive insights into the spatial and temporal variability of water quality parameters. Analyzing microbial data in depth is crucial in detecting bacterial species within a monitoring program for adjusting operational conditions to reduce the presence of microbial pathogens and enhance the quality of drinking water.
ContributorsAloraini, Saleh (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Perreault, Francois (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2023