This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

158480-Thumbnail Image.png
Description

This research is a comprehensive study of the sustainable modifiers for asphalt binder. It is a common practice to use modifiers to impart certain properties to asphalt binder; however, in order to facilitate the synthesis and design of highly effective sustainable modifiers, it is critical to thoroughly understand their underlying

This research is a comprehensive study of the sustainable modifiers for asphalt binder. It is a common practice to use modifiers to impart certain properties to asphalt binder; however, in order to facilitate the synthesis and design of highly effective sustainable modifiers, it is critical to thoroughly understand their underlying molecular level mechanisms in combination with micro and macro-level behavior. Therefore, this study incorporates a multi-scale approach using computational modeling and laboratory experiments to provide an in-depth understanding of the mechanisms of interaction between selected modifiers and the constituents of asphalt binder, at aged and unaged conditions. This study investigated the effect of paraffinic wax as a modifier for virgin binder in warm-mix asphalt that can reduce the environmental burden of asphalt pavements. The addition of wax was shown to reduce the viscosity of bitumen by reducing the self-interaction of asphaltene molecules and penetrating the existing nano agglomerates of asphaltenes. This study further examined how the interplay of various modifiers affects the modified binder’s thermomechanical properties. It was found that the presence of wax-based modifiers has a disrupting effect on the role of polyphosphoric acid that is another modifier of bitumen and its interactions with resin-type molecules.

This study was further extended to using nanozeolite as a mineral carrier for wax to better disperse wax in bitumen and reduce the wax's adverse effects such as physical hardening at low service temperatures and rutting at high service temperatures. This novel technique showed that using a different method of adding a modifier can help reduce the modifier's unwanted effects. It further showed that nanozeolite could carry wax-based modifiers and release them in bitumen, then acting as a scavenger for acidic compounds in the binder. This, in turn, could promote the resistance of asphalt binder to moisture damage by reducing the quantity of acidic compounds at the interface between the binder and the stone aggregates.

Furthermore, this study shows that iso-paraffin wax can reduce oxidized asphaltene molecules self-interaction and therefore, reduce the viscosity of aged bitumen while cause brittleness at low temperatures.

Additionally, a cradle to gate life-cycle assessment was performed for a new bio-modifier obtained from swine manure. This study showed that by partially replacing the bitumen with bio-binder from swine manure, the carbon footprint of the binder can be reduced by 10% in conjunction with reducing the cost and environmental impact of storing the manure in lagoons.

ContributorsSamieadel, Alireza (Author) / Fini, Elham H (Thesis advisor) / Kaloush, Kamil (Committee member) / Parrish, Kristen (Committee member) / Sharma, Brajendra Kumar (Committee member) / Parast, Mahour M (Committee member) / Arizona State University (Publisher)
Created2020