This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

155120-Thumbnail Image.png
Description
Electromagnetic band-gap (EBG) structures have noteworthy electromagnetic characteristics that include their phase variations with frequency. When combining perfect electric conductor (PEC) and EBG structures on the same ground plane, the scattering fields of the ground plane are altered because of the scattering properties of EBG structures. The scattering fields are

Electromagnetic band-gap (EBG) structures have noteworthy electromagnetic characteristics that include their phase variations with frequency. When combining perfect electric conductor (PEC) and EBG structures on the same ground plane, the scattering fields of the ground plane are altered because of the scattering properties of EBG structures. The scattering fields are cancelled along the principal planes because PEC and EBG structures are anti-phase at the resonant frequency. To make the scattered fields symmetrical under plane wave incidence, a square checkerboard surface is designed to form constructive and destructive interference scattering patterns to reduce the intensity of the scattered fields toward the observer; thus reducing the radar cross section (RCS). To increase the 10-dB RCS reduction (compared to a PEC surface) bandwidth, checkerboard surfaces of two different EBG structures on the same ground plane are designed. Thus, significant RCS reduction over a wider frequency bandwidth of about 63% is achieved.

Another design is a hexagonal checkerboard surface that achieves the same RCS reduction bandwidth because it combines the same EBG designs. The hexagonal checkerboard design further reduce the RCS than square checkerboard designs because the reflected energy is re-directed toward six directions and a null remains in the normal direction.

A dual frequency band checkerboard surface with 10-dB RCS reduction bandwidths of 61% and 24% is realized by utilizing two dual-band EBG structures, while the surfaces maintain scattering in four quadrants. The first RCS reduction bandwidth of the dual band is basically the same as in the square checkerboard design; however, the present surface exhibits a second frequency band of 10-dB RCS reduction.

Finally, cylindrically curved checkerboard surfaces are designed and examined for three different radii of curvature. Both narrow and wide band curved checkerboard surfaces are evaluated under normal incidence for both horizontal and vertical polarizations. Simulated bistatic RCS patterns of the cylindrical checkerboard surfaces are presented.

For all designs, bistatic and monostatic RCS of each checkerboard surface design are compared to that of the corresponding PEC surface. The monostatic simulations are also compared with measurements as a function of frequency and polarization. A very good agreement has been attained throughout.
ContributorsChen, Wengang (Author) / Balanis, Constantine A. (Thesis advisor) / Aberle, James T. (Committee member) / Yu, Hongbin (Committee member) / Palais, Joseph C. (Committee member) / Arizona State University (Publisher)
Created2016
155223-Thumbnail Image.png
Description
Semiconductor nanolasers, as a frontier subject has drawn a great deal of attention over the past decade. Semiconductor nanolasers are compatible with on-chip integrations towards the ultimate realization of photonic integrated circuits. However, innovative approaches are strongly required to overcome the limitation of lattice-mismatch issues. In this dissertation, two alternative

Semiconductor nanolasers, as a frontier subject has drawn a great deal of attention over the past decade. Semiconductor nanolasers are compatible with on-chip integrations towards the ultimate realization of photonic integrated circuits. However, innovative approaches are strongly required to overcome the limitation of lattice-mismatch issues. In this dissertation, two alternative approaches are employed to overcome the lattice-mismatch issues. i) By taking advantage of nanowires or nanobelts techniques, flexibility in bandgap engineering has been greatly expanded, resulting in the nanolasers with wide wavelength coverage and tunability. Simultaneous two-color lasing in green and red is firstly achieved from monolithic cadmium sulfide selenide nanosheets. The wavelength separation is up to 97 nm at room temperature, larger than the gain bandwidth of a single semiconductor material in the visible wavelength range. The strategies adopted for two-color lasers eventually leads to the realization of simultaneous red, green and blue lasing and white lasing from a single zinc cadmium sulfide selenide nanosheet with color tunability in the full visible range, making a major milestone in the ultimate solution of laser illumination and laser display. In addition, with the help of nanowire techniques, material emission has been extended to mid-infrared range, enabling lasing at ~3µm from single lead sulfide subwavelength wires at 180 K. The cavity volume of the subwavelength laser is down to 0.44 λ3 and the wavelength tuning range is over 270 nm through the thermo-optic mechanism, exhibiting considerable potentials for on-chip applications in mid-infrared wavelength ranges. ii) By taking advantage of membrane transfer techniques, heterogeneous integration of compound semiconductor and waveguide material becomes possible, enabling the successful fabrication of membrane based nano-ring lasers on a dielectric substrate. Thin membranes with total thickness of ~200nm are first released from the original growth substrate and then transferred onto a receiving substrate through a generally applicable membrane transfer method. Nano-ring arrays are then defined by photolithography with an individual radius of 750 nm and a radial thickness of 400-500 nm. As a result, single mode lasing is achieved on individual nano-ring lasers at ~980 nm with cavity volumes down to 0.24 λ3, providing a general avenue for future heterogeneous integration of nanolasers on silicon substrates.
ContributorsFan, Fan (Author) / Ning, Cun-Zheng (Thesis advisor) / Balanis, Constantine A (Committee member) / Palais, Joseph C. (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2016
153881-Thumbnail Image.png
Description
In this dissertation, I described my research on the growth and characterization of various nanostructures, such as nanowires, nanobelts and nanosheets, of different semiconductors in a Chemical Vapor Deposition (CVD) system.

In the first part of my research, I selected chalcogenides (such as CdS and CdSe) for a comprehensive study

In this dissertation, I described my research on the growth and characterization of various nanostructures, such as nanowires, nanobelts and nanosheets, of different semiconductors in a Chemical Vapor Deposition (CVD) system.

In the first part of my research, I selected chalcogenides (such as CdS and CdSe) for a comprehensive study in growing two-segment axial nanowires and radial nanobelts/sheets using the ternary CdSxSe1-x alloys. I demonstrated simultaneous red (from CdSe-rich) and green (from CdS-rich) light emission from a single monolithic heterostructure with a maximum wavelength separation of 160 nm. I also demonstrated the first simultaneous two-color lasing from a single nanosheet heterostructure with a wavelength separation of 91 nm under sufficiently strong pumping power.

In the second part, I considered several combinations of source materials with different growth methods in order to extend the spectral coverage of previously demonstrated structures towards shorter wavelengths to achieve full-color emissions. I achieved this with the growth of multisegment heterostructure nanosheets (MSHNs), using ZnS and CdSe chalcogenides, via our novel growth method. By utilizing this method, I demonstrated the first growth of ZnCdSSe MSHNs with an overall lattice mismatch of 6.6%, emitting red, green and blue light simultaneously, in a single furnace run using a simple CVD system. The key to this growth method is the dual ion exchange process which converts nanosheets rich in CdSe to nanosheets rich in ZnS, demonstrated for the first time in this work. Tri-chromatic white light emission with different correlated color temperature values was achieved under different growth conditions. We demonstrated multicolor (191 nm total wavelength separation) laser from a single monolithic semiconductor nanostructure for the first time. Due to the difficulties associated with growing semiconductor materials of differing composition on a given substrate using traditional planar epitaxial technology, our nanostructures and growth method are very promising for various device applications, including but not limited to: illumination, multicolor displays, photodetectors, spectrometers and monolithic multicolor lasers.
ContributorsTurkdogan, Sunay (Author) / Ning, Cun Zheng (Thesis advisor) / Palais, Joseph C. (Committee member) / Yu, Hongbin (Committee member) / Mardinly, A. John (Committee member) / Arizona State University (Publisher)
Created2015