This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171825-Thumbnail Image.png
Description
High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive

High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive manufacturing processes, due to variation of thermal gradient and cooling rates, and afterward during different thermomechanical loads, which parts experience in their specific applications, could also impact its mechanical properties both at room and high temperatures. In this study, an in-depth analysis of how different microstructural features, such as crystallographic texture, grain size, grain boundary misorientation angles, and inherent defects, as byproducts of electron beam powder bed fusion (EB-PBF) AM process, impact its anisotropic mechanical behaviors and softening behaviors due to interacting mechanisms. Mechanical testing is conducted for EB-PBF Ti6Al4V parts made at different build orientations up to 600°C temperature. Microstructural analysis using electron backscattered diffraction (EBSD) is conducted on samples before and after mechanical testing to understand the interacting impact that temperature and mechanical load have on the activation of certain mechanisms. The vertical samples showed larger grain sizes, with an average of 6.6 µm, a lower average misorientation angle, and subsequently lower strength values than the other two horizontal samples. Among the three strong preferred grain orientations of the α phases, <1 1 2 ̅ 1> and <1 1 2 ̅ 0> were dominant in horizontally built samples, whereas the <0 0 0 1> was dominant in vertically built samples. Thus, strong microstructural variation, as observed among different EB-PBF Ti6Al4V samples, mainly resulted in anisotropic behaviors. Furthermore, alpha grain showed a significant increase in average grain size for all samples with the increasing test temperature, especially from 400°C to 600°C, indicating grain growth and coarsening as potential softening mechanisms along with temperature-induced possible dislocation motion. The severity of internal and external defects on fatigue strength has been evaluated non-destructively using quantitative methods, i.e., Murakami’s square root of area parameter model and Basquin’s model, and the external surface defects were rendered to be more critical as potential crack initiation sites.
ContributorsMian, Md Jamal (Author) / Ladani, Leila (Thesis advisor) / Razmi, Jafar (Committee member) / Shuaib, Abdelrahman (Committee member) / Mobasher, Barzin (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
171718-Thumbnail Image.png
Description
Fatigue fracture is one of the most common types of mechanical failures seen in structures. Considering that fatigue failures usually initiate on surfaces, it is accepted that surface roughness has a detrimental effect on the fatigue life of components. Irregularities on the surface cause stress concentrations and form nucleation sites

Fatigue fracture is one of the most common types of mechanical failures seen in structures. Considering that fatigue failures usually initiate on surfaces, it is accepted that surface roughness has a detrimental effect on the fatigue life of components. Irregularities on the surface cause stress concentrations and form nucleation sites for cracks. As surface conditions are not always satisfactory, particularly for additively manufactured components, it is necessary to develop a reliable model for fatigue life estimation considering surface roughness effects and assure structural integrity. This research study focuses on extending a previously developed subcycle fatigue crack growth model to include the effects of surface roughness. Unlike other models that consider surface irregularities as series of cracks, the proposed model is unique in the way that it treats the peaks and valleys of surface texture as a single equivalent notch. First, an equivalent stress concentration factor for the roughness was estimated and introduced into an asymptotic interpolation method for notches. Later, a concept called equivalent initial flaw size was incorporated along with linear elastic fracture mechanics to predict the fatigue life of Ti-6Al-4V alloy with different levels of roughness under uniaxial and multiaxial loading conditions. The predicted results were validated using the available literature data. The developed model can also handle variable amplitude loading conditions, which is suggested for future work.
ContributorsKethamukkala, Kaushik (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022