This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

171825-Thumbnail Image.png
Description
High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive

High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive manufacturing processes, due to variation of thermal gradient and cooling rates, and afterward during different thermomechanical loads, which parts experience in their specific applications, could also impact its mechanical properties both at room and high temperatures. In this study, an in-depth analysis of how different microstructural features, such as crystallographic texture, grain size, grain boundary misorientation angles, and inherent defects, as byproducts of electron beam powder bed fusion (EB-PBF) AM process, impact its anisotropic mechanical behaviors and softening behaviors due to interacting mechanisms. Mechanical testing is conducted for EB-PBF Ti6Al4V parts made at different build orientations up to 600°C temperature. Microstructural analysis using electron backscattered diffraction (EBSD) is conducted on samples before and after mechanical testing to understand the interacting impact that temperature and mechanical load have on the activation of certain mechanisms. The vertical samples showed larger grain sizes, with an average of 6.6 µm, a lower average misorientation angle, and subsequently lower strength values than the other two horizontal samples. Among the three strong preferred grain orientations of the α phases, <1 1 2 ̅ 1> and <1 1 2 ̅ 0> were dominant in horizontally built samples, whereas the <0 0 0 1> was dominant in vertically built samples. Thus, strong microstructural variation, as observed among different EB-PBF Ti6Al4V samples, mainly resulted in anisotropic behaviors. Furthermore, alpha grain showed a significant increase in average grain size for all samples with the increasing test temperature, especially from 400°C to 600°C, indicating grain growth and coarsening as potential softening mechanisms along with temperature-induced possible dislocation motion. The severity of internal and external defects on fatigue strength has been evaluated non-destructively using quantitative methods, i.e., Murakami’s square root of area parameter model and Basquin’s model, and the external surface defects were rendered to be more critical as potential crack initiation sites.
ContributorsMian, Md Jamal (Author) / Ladani, Leila (Thesis advisor) / Razmi, Jafar (Committee member) / Shuaib, Abdelrahman (Committee member) / Mobasher, Barzin (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
157898-Thumbnail Image.png
Description
With the advancement of the Additive Manufacturing technology in the fields of metals, a lot of interest has developed in Laser Powder Bed (LPBF) for the Aerospace and Automotive industries. With primary challenges like high cost and time associated with this process reducing the build time is a critical component.

With the advancement of the Additive Manufacturing technology in the fields of metals, a lot of interest has developed in Laser Powder Bed (LPBF) for the Aerospace and Automotive industries. With primary challenges like high cost and time associated with this process reducing the build time is a critical component. Being a layer by layer process increasing layer thickness causes a decrease in manufacturing time. In this study, effects of the change in layer thickness in the Laser Powder Bed Fusion of Inconel 718 were evaluated. The effects were investigated for 30, 60 and 80 μm layer thicknesses and were evaluated for Relative Density, Surface Roughness and Mechanical properties, for as-printed specimens not subjected to any heat treatment. The process was optimized to print dense pasts by varying three parameters: power, velocity and hatch distance. Significant change in some properties like true Ultimate Tensile Testing (UTS), %Necking and Yield Stress was observed.
ContributorsPatil, Dhiraj Amar (Author) / Bhate, Dhruv (Thesis advisor) / Azeredo, Bruno (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2019
161601-Thumbnail Image.png
Description
Inspired by the design of lightweight cellular structures in nature, humans have made cellular solids for a wide range of engineering applications. Cellular structures composed of solid and gaseous phases, and an interconnected network of solid struts or plates that form the cell's edges and faces. This makes them an

Inspired by the design of lightweight cellular structures in nature, humans have made cellular solids for a wide range of engineering applications. Cellular structures composed of solid and gaseous phases, and an interconnected network of solid struts or plates that form the cell's edges and faces. This makes them an ideal candidate for numerous energy absorption applications in the military, transportation, and automotive industries. The objective of the thesis is to study the energy-absorption of multi-material cellular structures. Cellular structures made from Acrylonitrile-Butadiene-Styrene (ABS) a thermoplastic polymer and Thermoplastic Polyurethane (TPU) a thermoplastic elastomer were manufactured using dual extrusion 3D printing. The surface-based structures were designed with partitions to allocate different materials using Matlab and nTopology. Aperiodicity was introduced to the design through perturbation. The specimens were designed for two wall thicknesses - 0.5mm and 1mm, respectively. In total, 18 specimens were designed and 3D printed. All the specimens were tested under quasi-static compression. A detailed analysis was performed to study the energy absorption metrics and draw conclusions, with emphasis on specific energy absorbed as a function of relative density, efficiency, and peak stress of the specimens to hypothesize and validate mechanisms for observed behavior. All the specimens were analyzed to draw comparisons across designs.
ContributorsVarma, Rajeshree Pawan (Author) / Bhate, Dhruv (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2021