This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

168390-Thumbnail Image.png
Description
Concentrating solar thermal power systems gained a wide interest for a long time to serve as a renewable and sustainable alternate source of energy. While the optimization and modification are ongoing, focused generally on solar power systems to provide solar-electrical energy or solar-thermal energy, the production process of Ordinary Portland

Concentrating solar thermal power systems gained a wide interest for a long time to serve as a renewable and sustainable alternate source of energy. While the optimization and modification are ongoing, focused generally on solar power systems to provide solar-electrical energy or solar-thermal energy, the production process of Ordinary Portland Cement (OPC) has not changed over the past century. A linear refractive Fresnel lens application in cement production process is investigated in this research to provide the thermal power required to raise the temperature of lime up to 623 K (350C) with zero carbon emissions for stage two in a new proposed two-stage production process. The location is considered to be Phoenix, Arizona, with a linear refractive Fresnel lens facing south, tilted 33.45 equaling the location latitude, and concentrating solar beam radiation on an evacuated tube collector with tracking system continuously rotating about the north-south axis. The mathematical analysis showed promising results based on averaged monthly values representing an average hourly useful thermal power and receiver temperature during day-light hours for each month throughout the year. The maximum average hourly useful thermal power throughout the year was obtained for June as 33 kWth m-2 with a maximum receiver temperature achieved of 786 K (513C), and the minimum useful thermal power obtained during the month of December with 27 kWth m-2 and a minimum receiver temperature of 701 K (428C).
ContributorsAlkhuwaiteem, Mohammad (Author) / Phelan, Patrick (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2021
193429-Thumbnail Image.png
Description
This study investigates the energy saving potential of high albedo roof coatings which are designed to reflect a large proportion of solar radiation compared to traditional roofing materials. Using EnergyPlus simulations, the efficacy of silicone, acrylic, and aluminum roof coatings is assessed across two prototype commercial buildings—a standalone retail (2,294

This study investigates the energy saving potential of high albedo roof coatings which are designed to reflect a large proportion of solar radiation compared to traditional roofing materials. Using EnergyPlus simulations, the efficacy of silicone, acrylic, and aluminum roof coatings is assessed across two prototype commercial buildings—a standalone retail (2,294 m2 or 24,692 ft2) and a strip-mall (2,090 m2 or 22,500 ft2)—located in four cities: Phoenix, Houston, Los Angeles, and Miami. The performance of reflective coatings was compared with respect to a black roof having a solar reflectance of 5% and a thermal emittance of 90%. A sensitivity analysis was done to assess the impact of solar reflectance and thermal emittance on the ability of roof coatings to reduce surface temperatures, a key factor behind energy savings. This factor plays a crucial role in all three heat transfer mechanisms: conduction, convection, and radiation. The rooftop surface temperature exhibits considerable variation depending on the solar reflectance and thermal emittance attributes of the roof. A contour plot between these properties reveals that high values of both result in reduced cooling needs and a heating penalty which is insignificant when compared with cooling savings for cooling-dominant climates like Phoenix where the cooling demand significantly outweighs the heating demand, yielding significant energy savings. Furthermore, the study also investigates the effects of reflective coatings on buildings that have photovoltaic solar panels installed on them. This includes exploring their impact on building HVAC loads, as well as the performance improvement due to the reduced temperatures beneath them.
ContributorsSharma, Ajay Kumar (Author) / Phelan, Patrick (Thesis advisor) / Neithalath, Narayanan (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2024