This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

157543-Thumbnail Image.png
Description
With the development of modern technological infrastructures, such as social networks or the Internet of Things (IoT), data is being generated at a speed that is never before seen. Analyzing the content of this data helps us further understand underlying patterns and discover relationships among different subsets of data, enabling

With the development of modern technological infrastructures, such as social networks or the Internet of Things (IoT), data is being generated at a speed that is never before seen. Analyzing the content of this data helps us further understand underlying patterns and discover relationships among different subsets of data, enabling intelligent decision making. In this thesis, I first introduce the Low-rank, Win-dowed, Incremental Singular Value Decomposition (SVD) framework to inclemently maintain SVD factors over streaming data. Then, I present the Group Incremental Non-Negative Matrix Factorization framework to leverage redundancies in the data to speed up incremental processing. They primarily tackle the challenges of using factorization models in the scenarios with streaming textual data. In order to tackle the challenges in improving the effectiveness and efficiency of generative models in this streaming environment, I introduce the Incremental Dynamic Multiscale Topic Model framework, which identifies multi-scale patterns and their evolutions within streaming datasets. While the latent factor models assume the linear independence in the latent factors, the generative models assume the observation is generated from a set of latent variables with various distributions. Furthermore, some models may not be accessible or their underlying structures are too complex to understand, such as simulation ensembles, where there may be thousands of parameters with a huge parameter space, the only way to learn information from it is to execute real simulations. When performing knowledge discovery and decision making through data- and model-driven simulation ensembles, it is expensive to operate these ensembles continuously at large scale, due to the high computational. Consequently, given a relatively small simulation budget, it is desirable to identify a sparse ensemble that includes the most informative simulations, while still permitting effective exploration of the input parameter space. Therefore, I present Complexity-Guided Parameter Space Sampling framework, which is an intelligent, top-down sampling scheme to select the most salient simulation parameters to execute, given a limited computational budget. Moreover, I also present a Pivot-Guided Parameter Space Sampling framework, which incrementally maintains a diverse ensemble of models of the simulation ensemble space and uses a pivot guided mechanism for future sample selection.
ContributorsChen, Xilun (Author) / Candan, K. Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Pedrielli, Giulia (Committee member) / Sapino, Maria Luisa (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2019
158436-Thumbnail Image.png
Description
The burden of adaptation has been a major limiting factor in the adoption rates of new wearable assistive technologies. This burden has created a necessity for the exploration and combination of two key concepts in the development of upcoming wearables: anticipation and invisibility. The combination of these two topics has

The burden of adaptation has been a major limiting factor in the adoption rates of new wearable assistive technologies. This burden has created a necessity for the exploration and combination of two key concepts in the development of upcoming wearables: anticipation and invisibility. The combination of these two topics has created the field of Anticipatory and Invisible Interfaces (AII)

In this dissertation, a novel framework is introduced for the development of anticipatory devices that augment the proprioceptive system in individuals with neurodegenerative disorders in a seamless way that scaffolds off of existing cognitive feedback models. The framework suggests three main categories of consideration in the development of devices which are anticipatory and invisible:

• Idiosyncratic Design: How do can a design encapsulate the unique characteristics of the individual in the design of assistive aids?

• Adaptation to Intrapersonal Variations: As individuals progress through the various stages of a disability
eurological disorder, how can the technology adapt thresholds for feedback over time to address these shifts in ability?

• Context Aware Invisibility: How can the mechanisms of interaction be modified in order to reduce cognitive load?

The concepts proposed in this framework can be generalized to a broad range of domains; however, there are two primary applications for this work: rehabilitation and assistive aids. In preliminary studies, the framework is applied in the areas of Parkinsonian freezing of gait anticipation and the anticipation of body non-compliance during rehabilitative exercise.
ContributorsTadayon, Arash (Author) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Krishnamurthi, Narayanan (Committee member) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020
157788-Thumbnail Image.png
Description
Parents fulfill a pivotal role in early childhood development of social and communication

skills. In children with autism, the development of these skills can be delayed. Applied

behavioral analysis (ABA) techniques have been created to aid in skill acquisition.

Among these, pivotal response treatment (PRT) has been empirically shown to foster

improvements. Research into

Parents fulfill a pivotal role in early childhood development of social and communication

skills. In children with autism, the development of these skills can be delayed. Applied

behavioral analysis (ABA) techniques have been created to aid in skill acquisition.

Among these, pivotal response treatment (PRT) has been empirically shown to foster

improvements. Research into PRT implementation has also shown that parents can be

trained to be effective interventionists for their children. The current difficulty in PRT

training is how to disseminate training to parents who need it, and how to support and

motivate practitioners after training.

Evaluation of the parents’ fidelity to implementation is often undertaken using video

probes that depict the dyadic interaction occurring between the parent and the child during

PRT sessions. These videos are time consuming for clinicians to process, and often result

in only minimal feedback for the parents. Current trends in technology could be utilized to

alleviate the manual cost of extracting data from the videos, affording greater

opportunities for providing clinician created feedback as well as automated assessments.

The naturalistic context of the video probes along with the dependence on ubiquitous

recording devices creates a difficult scenario for classification tasks. The domain of the

PRT video probes can be expected to have high levels of both aleatory and epistemic

uncertainty. Addressing these challenges requires examination of the multimodal data

along with implementation and evaluation of classification algorithms. This is explored

through the use of a new dataset of PRT videos.

The relationship between the parent and the clinician is important. The clinician can

provide support and help build self-efficacy in addition to providing knowledge and

modeling of treatment procedures. Facilitating this relationship along with automated

feedback not only provides the opportunity to present expert feedback to the parent, but

also allows the clinician to aid in personalizing the classification models. By utilizing a

human-in-the-loop framework, clinicians can aid in addressing the uncertainty in the

classification models by providing additional labeled samples. This will allow the system

to improve classification and provides a person-centered approach to extracting

multimodal data from PRT video probes.
ContributorsCopenhaver Heath, Corey D (Author) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Venkateswara, Hemanth (Committee member) / Davulcu, Hasan (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2019