This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

158691-Thumbnail Image.png
Description

The use of reinforcing fibers in asphalt concrete (AC) has been documented in many studies. Published studies generally demonstrate positive benefits from using mechanically fiber reinforced asphalt concrete (M-FRAC); however, improvements generally vary with respect to the particular study. The widespread acceptance of fibers use in the asphalt industry is

The use of reinforcing fibers in asphalt concrete (AC) has been documented in many studies. Published studies generally demonstrate positive benefits from using mechanically fiber reinforced asphalt concrete (M-FRAC); however, improvements generally vary with respect to the particular study. The widespread acceptance of fibers use in the asphalt industry is hindered by these inconsistencies. This study seeks to fulfill a critical knowledge gap by advancing knowledge of M-FRAC in order to better understand, interpret, and predict the behavior of these materials. The specific objectives of this dissertation are to; (a) evaluate the state of aramid fiber in AC and examine their impacts on the mechanical performance of asphalt mixtures; (b) evaluate the interaction of the reinforcement efficiency of fibers with compositions of asphalt mixtures; (c) evaluate tensile and fracture properties of M-FRAC; (d) evaluate the interfacial shear bond strength and critical fiber length in M-FRAC; and (e) propose micromechanical models for prediction of the tensile strength of M-FRAC. The research approach to achieve these objectives included experimental measurements and theoretical considerations. Throughout the study, the mechanical response of specimens with and without fibers are scrutinized using standard test methods including flow number (AASHTO T 378) and uniaxial fatigue (AASHTO TP 107), and non-standard test methods for fiber extraction, direct tension, semi-circular bending, and single fiber pull-out tests. Then, the fiber reinforcement mechanism is further examined by using the basic theories of viscoelasticity as well as micromechanical models.

The findings of this study suggest that fibers do serve as a reinforcement element in AC; however, their reinforcing effectiveness depends on the state of fibers in the mix, temperature/ loading rate, properties of fiber (i.e. dosage, length), properties of mix type (gradation and binder content), and mechanical test type to characterize M-FRAC. The outcome of every single aforementioned elements identifies key reasons attributed to the fiber reinforcement efficiency in AC, which provides insights to justify the discrepancies in the literature and further recommends solutions to overcome the knowledge gaps. This improved insight will translate into the better deployment of existing fiber-based technologies; the development of new, and more effective fiber-based technologies in asphalt mixtures.

ContributorsNoorvand, Hossein (Author) / Kaloush, Kamil (Thesis advisor) / Underwood, Shane B (Thesis advisor) / Mamlouk, Michael (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2020
158184-Thumbnail Image.png
Description
There has been a renewed interest to understand the degradation mechanism of concrete under radiation as many nuclear reactors are reaching their expiration date. Much of the information on the degradation mechanism of concrete under radiation comes from the experiments, which are carried out on very small specimens. With the

There has been a renewed interest to understand the degradation mechanism of concrete under radiation as many nuclear reactors are reaching their expiration date. Much of the information on the degradation mechanism of concrete under radiation comes from the experiments, which are carried out on very small specimens. With the advent of finite element analysis, a numerical predictive tool is desired that can predict the extent of damage in the nuclear concrete structure.

A mesoscale micro-structural framework is proposed in Multiphysics Object-Oriented Simulation Environment (MOOSE) finite element framework which represents the first step in this direction. As part of the framework, a coupled creep damage algorithm was developed and implemented in MOOSE. The algorithm considers creep through rheological models, while damage evolves exponentially as a function of elastic strain and creep strain. A characteristic length is introduced in the formulation such that the energy release rate associated with each element remains the same to avoid vanishing energy dissipation with mesh refinement. A creep damage parameter quantifies the effect of creep strain on the damage that was calibrated using three-point bending experiments with varying rates of loading.

The creep damage model was also validated with restrained ring shrinkage tests on cementitious materials containing compliant/stiff inclusions subjected to variable drying conditions. The simulation approach explicitly considers: (i) moisture diffusion driven differential shrinkage along the depth of the specimen (ii) viscoelastic response of aging cementitious materials (iii) isotropic damage model with Rankine′s failure initiation criterion, and (iv) random distribution of tensile strengths of individual finite elements.

The model was finally validated with experimental results on neutron-irradiated concrete. The simulation approach considers: (i) coupled hygro-thermal model to predict the temperature and humidity profile inside the specimen (ii) radiation-induced volumetric expansion of aggregates (RIVE) (iii) thermal, shrinkage and creep effects based on the temperature and humidity profile and (iv) isotropic damage model with Rankine’s criterion to determine failure initiation.
ContributorsSaklani, Naman (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanian (Committee member) / Mobasher, Barzin (Committee member) / Hoover, Christian (Committee member) / Chawla, Nikhilesh (Committee member) / Arizona State University (Publisher)
Created2020