This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171825-Thumbnail Image.png
Description
High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive

High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive manufacturing processes, due to variation of thermal gradient and cooling rates, and afterward during different thermomechanical loads, which parts experience in their specific applications, could also impact its mechanical properties both at room and high temperatures. In this study, an in-depth analysis of how different microstructural features, such as crystallographic texture, grain size, grain boundary misorientation angles, and inherent defects, as byproducts of electron beam powder bed fusion (EB-PBF) AM process, impact its anisotropic mechanical behaviors and softening behaviors due to interacting mechanisms. Mechanical testing is conducted for EB-PBF Ti6Al4V parts made at different build orientations up to 600°C temperature. Microstructural analysis using electron backscattered diffraction (EBSD) is conducted on samples before and after mechanical testing to understand the interacting impact that temperature and mechanical load have on the activation of certain mechanisms. The vertical samples showed larger grain sizes, with an average of 6.6 µm, a lower average misorientation angle, and subsequently lower strength values than the other two horizontal samples. Among the three strong preferred grain orientations of the α phases, <1 1 2 ̅ 1> and <1 1 2 ̅ 0> were dominant in horizontally built samples, whereas the <0 0 0 1> was dominant in vertically built samples. Thus, strong microstructural variation, as observed among different EB-PBF Ti6Al4V samples, mainly resulted in anisotropic behaviors. Furthermore, alpha grain showed a significant increase in average grain size for all samples with the increasing test temperature, especially from 400°C to 600°C, indicating grain growth and coarsening as potential softening mechanisms along with temperature-induced possible dislocation motion. The severity of internal and external defects on fatigue strength has been evaluated non-destructively using quantitative methods, i.e., Murakami’s square root of area parameter model and Basquin’s model, and the external surface defects were rendered to be more critical as potential crack initiation sites.
ContributorsMian, Md Jamal (Author) / Ladani, Leila (Thesis advisor) / Razmi, Jafar (Committee member) / Shuaib, Abdelrahman (Committee member) / Mobasher, Barzin (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
158691-Thumbnail Image.png
Description

The use of reinforcing fibers in asphalt concrete (AC) has been documented in many studies. Published studies generally demonstrate positive benefits from using mechanically fiber reinforced asphalt concrete (M-FRAC); however, improvements generally vary with respect to the particular study. The widespread acceptance of fibers use in the asphalt industry is

The use of reinforcing fibers in asphalt concrete (AC) has been documented in many studies. Published studies generally demonstrate positive benefits from using mechanically fiber reinforced asphalt concrete (M-FRAC); however, improvements generally vary with respect to the particular study. The widespread acceptance of fibers use in the asphalt industry is hindered by these inconsistencies. This study seeks to fulfill a critical knowledge gap by advancing knowledge of M-FRAC in order to better understand, interpret, and predict the behavior of these materials. The specific objectives of this dissertation are to; (a) evaluate the state of aramid fiber in AC and examine their impacts on the mechanical performance of asphalt mixtures; (b) evaluate the interaction of the reinforcement efficiency of fibers with compositions of asphalt mixtures; (c) evaluate tensile and fracture properties of M-FRAC; (d) evaluate the interfacial shear bond strength and critical fiber length in M-FRAC; and (e) propose micromechanical models for prediction of the tensile strength of M-FRAC. The research approach to achieve these objectives included experimental measurements and theoretical considerations. Throughout the study, the mechanical response of specimens with and without fibers are scrutinized using standard test methods including flow number (AASHTO T 378) and uniaxial fatigue (AASHTO TP 107), and non-standard test methods for fiber extraction, direct tension, semi-circular bending, and single fiber pull-out tests. Then, the fiber reinforcement mechanism is further examined by using the basic theories of viscoelasticity as well as micromechanical models.

The findings of this study suggest that fibers do serve as a reinforcement element in AC; however, their reinforcing effectiveness depends on the state of fibers in the mix, temperature/ loading rate, properties of fiber (i.e. dosage, length), properties of mix type (gradation and binder content), and mechanical test type to characterize M-FRAC. The outcome of every single aforementioned elements identifies key reasons attributed to the fiber reinforcement efficiency in AC, which provides insights to justify the discrepancies in the literature and further recommends solutions to overcome the knowledge gaps. This improved insight will translate into the better deployment of existing fiber-based technologies; the development of new, and more effective fiber-based technologies in asphalt mixtures.

ContributorsNoorvand, Hossein (Author) / Kaloush, Kamil (Thesis advisor) / Underwood, Shane B (Thesis advisor) / Mamlouk, Michael (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2020