This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155262-Thumbnail Image.png
Description
The National Basketball Association (NBA) is the most popular basketball league in the world. The world-wide mighty high popularity to the league leads to large amount of interesting and challenging research problems. Among them, predicting the outcome of an upcoming NBA match between two specific teams according to their historical

The National Basketball Association (NBA) is the most popular basketball league in the world. The world-wide mighty high popularity to the league leads to large amount of interesting and challenging research problems. Among them, predicting the outcome of an upcoming NBA match between two specific teams according to their historical data is especially attractive. With rapid development of machine learning techniques, it opens the door to examine the correlation between statistical data and outcome of matches. However, existing methods typically make predictions before game starts. In-game prediction, or real-time prediction, has not yet been sufficiently studied. During a match, data are cumulatively generated, and with the accumulation, data become more comprehensive and potentially embrace more predictive power, so that prediction accuracy may dynamically increase with a match goes on. In this study, I design game-level and player-level features based on realtime data of NBA matches and apply a machine learning model to investigate the possibility and characteristics of using real-time prediction in NBA matches.
ContributorsLin, Rongyu (Author) / Tong, Hanghang (Thesis advisor) / He, Jingrui (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2017
155343-Thumbnail Image.png
Description
Predictive analytics embraces an extensive area of techniques from statistical modeling to machine learning to data mining and is applied in business intelligence, public health, disaster management and response, and many other fields. To date, visualization has been broadly used to support tasks in the predictive analytics pipeline under the

Predictive analytics embraces an extensive area of techniques from statistical modeling to machine learning to data mining and is applied in business intelligence, public health, disaster management and response, and many other fields. To date, visualization has been broadly used to support tasks in the predictive analytics pipeline under the underlying assumption that a human-in-the-loop can aid the analysis by integrating domain knowledge that might not be broadly captured by the system. Primary uses of visualization in the predictive analytics pipeline have focused on data cleaning, exploratory analysis, and diagnostics. More recently, numerous visual analytics systems for feature selection, incremental learning, and various prediction tasks have been proposed to support the growing use of complex models, agent-specific optimization, and comprehensive model comparison and result exploration. Such work is being driven by advances in interactive machine learning and the desire of end-users to understand and engage with the modeling process. However, despite the numerous and promising applications of visual analytics to predictive analytics tasks, work to assess the effectiveness of predictive visual analytics is lacking.

This thesis studies the current methodologies in predictive visual analytics. It first defines the scope of predictive analytics and presents a predictive visual analytics (PVA) pipeline. Following the proposed pipeline, a predictive visual analytics framework is developed to be used to explore under what circumstances a human-in-the-loop prediction process is most effective. This framework combines sentiment analysis, feature selection mechanisms, similarity comparisons and model cross-validation through a variety of interactive visualizations to support analysts in model building and prediction. To test the proposed framework, an instantiation for movie box-office prediction is developed and evaluated. Results from small-scale user studies are presented and discussed, and a generalized user study is carried out to assess the role of predictive visual analytics under a movie box-office prediction scenario.
ContributorsLu, Yafeng (Author) / Maciejewski, Ross (Thesis advisor) / Cooke, Nancy J. (Committee member) / Liu, Huan (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2017