This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

153003-Thumbnail Image.png
Description
Recent efforts in data cleaning have focused mostly on problems like data deduplication, record matching, and data standardization; few of these focus on fixing incorrect attribute values in tuples. Correcting values in tuples is typically performed by a minimum cost repair of tuples that violate static constraints like CFDs (which

Recent efforts in data cleaning have focused mostly on problems like data deduplication, record matching, and data standardization; few of these focus on fixing incorrect attribute values in tuples. Correcting values in tuples is typically performed by a minimum cost repair of tuples that violate static constraints like CFDs (which have to be provided by domain experts, or learned from a clean sample of the database). In this thesis, I provide a method for correcting individual attribute values in a structured database using a Bayesian generative model and a statistical error model learned from the noisy database directly. I thus avoid the necessity for a domain expert or master data. I also show how to efficiently perform consistent query answering using this model over a dirty database, in case write permissions to the database are unavailable. A Map-Reduce architecture to perform this computation in a distributed manner is also shown. I evaluate these methods over both synthetic and real data.
ContributorsDe, Sushovan (Author) / Kambhampati, Subbarao (Thesis advisor) / Chen, Yi (Committee member) / Candan, K. Selcuk (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2014