This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

151867-Thumbnail Image.png
Description
Automating aspects of biocuration through biomedical information extraction could significantly impact biomedical research by enabling greater biocuration throughput and improving the feasibility of a wider scope. An important step in biomedical information extraction systems is named entity recognition (NER), where mentions of entities such as proteins and diseases are located

Automating aspects of biocuration through biomedical information extraction could significantly impact biomedical research by enabling greater biocuration throughput and improving the feasibility of a wider scope. An important step in biomedical information extraction systems is named entity recognition (NER), where mentions of entities such as proteins and diseases are located within natural-language text and their semantic type is determined. This step is critical for later tasks in an information extraction pipeline, including normalization and relationship extraction. BANNER is a benchmark biomedical NER system using linear-chain conditional random fields and the rich feature set approach. A case study with BANNER locating genes and proteins in biomedical literature is described. The first corpus for disease NER adequate for use as training data is introduced, and employed in a case study of disease NER. The first corpus locating adverse drug reactions (ADRs) in user posts to a health-related social website is also described, and a system to locate and identify ADRs in social media text is created and evaluated. The rich feature set approach to creating NER feature sets is argued to be subject to diminishing returns, implying that additional improvements may require more sophisticated methods for creating the feature set. This motivates the first application of multivariate feature selection with filters and false discovery rate analysis to biomedical NER, resulting in a feature set at least 3 orders of magnitude smaller than the set created by the rich feature set approach. Finally, two novel approaches to NER by modeling the semantics of token sequences are introduced. The first method focuses on the sequence content by using language models to determine whether a sequence resembles entries in a lexicon of entity names or text from an unlabeled corpus more closely. The second method models the distributional semantics of token sequences, determining the similarity between a potential mention and the token sequences from the training data by analyzing the contexts where each sequence appears in a large unlabeled corpus. The second method is shown to improve the performance of BANNER on multiple data sets.
ContributorsLeaman, James Robert (Author) / Gonzalez, Graciela (Thesis advisor) / Baral, Chitta (Thesis advisor) / Cohen, Kevin B (Committee member) / Liu, Huan (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
153091-Thumbnail Image.png
Description
As robotic technology and its various uses grow steadily more complex and ubiquitous, humans are coming into increasing contact with robotic agents. A large portion of such contact is cooperative interaction, where both humans and robots are required to work on the same application towards achieving common goals. These application

As robotic technology and its various uses grow steadily more complex and ubiquitous, humans are coming into increasing contact with robotic agents. A large portion of such contact is cooperative interaction, where both humans and robots are required to work on the same application towards achieving common goals. These application scenarios are characterized by a need to leverage the strengths of each agent as part of a unified team to reach those common goals. To ensure that the robotic agent is truly a contributing team-member, it must exhibit some degree of autonomy in achieving goals that have been delegated to it. Indeed, a significant portion of the utility of such human-robot teams derives from the delegation of goals to the robot, and autonomy on the part of the robot in achieving those goals. In order to be considered truly autonomous, the robot must be able to make its own plans to achieve the goals assigned to it, with only minimal direction and assistance from the human.

Automated planning provides the solution to this problem -- indeed, one of the main motivations that underpinned the beginnings of the field of automated planning was to provide planning support for Shakey the robot with the STRIPS system. For long, however, automated planners suffered from scalability issues that precluded their application to real world, real time robotic systems. Recent decades have seen a gradual abeyance of those issues, and fast planning systems are now the norm rather than the exception. However, some of these advances in speedup and scalability have been achieved by ignoring or abstracting out challenges that real world integrated robotic systems must confront.

In this work, the problem of planning for human-hobot teaming is introduced. The central idea -- the use of automated planning systems as mediators in such human-robot teaming scenarios -- and the main challenges inspired from real world scenarios that must be addressed in order to make such planning seamless are presented: (i) Goals which can be specified or changed at execution time, after the planning process has completed; (ii) Worlds and scenarios where the state changes dynamically while a previous plan is executing; (iii) Models that are incomplete and can be changed during execution; and (iv) Information about the human agent's plan and intentions that can be used for coordination. These challenges are compounded by the fact that the human-robot team must execute in an open world, rife with dynamic events and other agents; and in a manner that encourages the exchange of information between the human and the robot. As an answer to these challenges, implemented solutions and a fielded prototype that combines all of those solutions into one planning system are discussed. Results from running this prototype in real world scenarios are presented, and extensions to some of the solutions are offered as appropriate.
ContributorsTalamadupula, Kartik (Author) / Kambhampati, Subbarao (Thesis advisor) / Baral, Chitta (Committee member) / Liu, Huan (Committee member) / Scheutz, Matthias (Committee member) / Smith, David E. (Committee member) / Arizona State University (Publisher)
Created2014
156862-Thumbnail Image.png
Description
Teams are increasingly indispensable to achievements in any organizations. Despite the organizations' substantial dependency on teams, fundamental knowledge about the conduct of team-enabled operations is lacking, especially at the {\it social, cognitive} and {\it information} level in relation to team performance and network dynamics. The goal of this dissertation is

Teams are increasingly indispensable to achievements in any organizations. Despite the organizations' substantial dependency on teams, fundamental knowledge about the conduct of team-enabled operations is lacking, especially at the {\it social, cognitive} and {\it information} level in relation to team performance and network dynamics. The goal of this dissertation is to create new instruments to {\it predict}, {\it optimize} and {\it explain} teams' performance in the context of composite networks (i.e., social-cognitive-information networks).

Understanding the dynamic mechanisms that drive the success of high-performing teams can provide the key insights into building the best teams and hence lift the productivity and profitability of the organizations. For this purpose, novel predictive models to forecast the long-term performance of teams ({\it point prediction}) as well as the pathway to impact ({\it trajectory prediction}) have been developed. A joint predictive model by exploring the relationship between team level and individual level performances has also been proposed.

For an existing team, it is often desirable to optimize its performance through expanding the team by bringing a new team member with certain expertise, or finding a new candidate to replace an existing under-performing member. I have developed graph kernel based performance optimization algorithms by considering both the structural matching and skill matching to solve the above enhancement scenarios. I have also worked towards real time team optimization by leveraging reinforcement learning techniques.

With the increased complexity of the machine learning models for predicting and optimizing teams, it is critical to acquire a deeper understanding of model behavior. For this purpose, I have investigated {\em explainable prediction} -- to provide explanation behind a performance prediction and {\em explainable optimization} -- to give reasons why the model recommendations are good candidates for certain enhancement scenarios.
ContributorsLi, Liangyue (Author) / Tong, Hanghang (Thesis advisor) / Baral, Chitta (Committee member) / Liu, Huan (Committee member) / Buchler, Norbou (Committee member) / Arizona State University (Publisher)
Created2018
149454-Thumbnail Image.png
Description
Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the

Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the ability to represent goals in a non-deterministic domain, goals that change non-monotonically, and goals with preferences. This dissertation defines new goal specification languages by extending temporal logics to address these issues. First considered is the goal specification in non-deterministic domains, in which an agent following a policy leads to a set of paths. A logic is proposed to distinguish paths of the agent from all paths in the domain. In addition, to address the need of comparing policies for finding the best ones, a language capable of quantifying over policies is proposed. As policy structures of agents play an important role in goal specification, languages are also defined by considering different policy structures. Besides, after an agent is given an initial goal, the agent may change its expectations or the domain may change, thus goals that are previously specified may need to be further updated, revised, partially retracted, or even completely changed. Non-monotonic goal specification languages that can make these changes in an elaboration tolerant manner are needed. Two languages that rely on labeling sub-formulas and connecting multiple rules are developed to address non-monotonicity in goal specification. Also, agents may have preferential relations among sub-goals, and the preferential relations may change as agents achieve other sub-goals. By nesting a comparison operator with other temporal operators, a language with dynamic preferences is proposed. Various goals that cannot be expressed in other languages are expressed in the proposed languages. Finally, plans are given for some goals specified in the proposed languages.
ContributorsZhao, Jicheng (Author) / Baral, Chitta (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Lee, Joohyung (Committee member) / Lifschitz, Vladimir (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2010
171740-Thumbnail Image.png
Description
An important objective of AI is to understand real-world observations and build up interactive communication with people. The ability to interpret and react to the perception reveals the important necessity of developing such a system across both the modalities of Vision (V) and Language (L). Although there have been massive

An important objective of AI is to understand real-world observations and build up interactive communication with people. The ability to interpret and react to the perception reveals the important necessity of developing such a system across both the modalities of Vision (V) and Language (L). Although there have been massive efforts on various VL tasks, e.g., Image/Video Captioning, Visual Question Answering, and Textual Grounding, very few of them focus on building the VL models with increased efficiency under real-world scenarios. The main focus of this dissertation is to comprehensively investigate the very uncharted efficient VL learning, aiming to build lightweight, data-efficient, and real-world applicable VL models. The proposed studies in this dissertation take three primary aspects into account when it comes to efficient VL, 1). Data Efficiency: collecting task-specific annotations is prohibitively expensive and so manual labor is not always attainable. Techniques are developed to assist the VL learning from implicit supervision, i.e., in a weakly- supervised fashion. 2). Continuing from that, efficient representation learning is further explored with increased scalability, leveraging a large image-text corpus without task-specific annotations. In particular, the knowledge distillation technique is studied for generic Representation Learning which proves to bring substantial performance gain to the regular representation learning schema. 3). Architectural Efficiency. Deploying the VL model on edge devices is notoriously challenging due to their cumbersome architectures. To further extend these advancements to the real world, a novel efficient VL architecture is designed to tackle the inference bottleneck and the inconvenient two-stage training. Extensive discussions have been conducted on several critical aspects that prominently influence the performances of compact VL models.
ContributorsFang, Zhiyuan (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Committee member) / Liu, Huan (Committee member) / Liu, Zicheng (Committee member) / Arizona State University (Publisher)
Created2022
161967-Thumbnail Image.png
Description
Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to

Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to force models to avoid being exposed to biases. However, the filtering leads to a considerable wastage of resources as most of the dataset created is discarded as biased. This work deals with avoiding the wastage of resources by identifying and quantifying the biases. I further elaborate on the implications of dataset filtering on robustness (to adversarial attacks) and generalization (to out-of-distribution samples). The findings suggest that while dataset filtering does help to improve OOD(Out-Of-Distribution) generalization, it has a significant negative impact on robustness to adversarial attacks. It also shows that transforming bias-inducing samples into adversarial samples (instead of eliminating them from the dataset) can significantly boost robustness without sacrificing generalization.
ContributorsSachdeva, Bhavdeep Singh (Author) / Baral, Chitta (Thesis advisor) / Liu, Huan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021