This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171672-Thumbnail Image.png
Description
Voltage Source Inverter (VSI) is an integral component that converts DC voltage to AC voltage suitable for driving the electric motor in Electric Vehicles/Hybrid Electric Vehicles (EVs/HEVs) and integration with electric grid in grid-connected photovoltaic (PV) converter. Performance of VSI is significantly impacted by the type of Pulse Width Modulation

Voltage Source Inverter (VSI) is an integral component that converts DC voltage to AC voltage suitable for driving the electric motor in Electric Vehicles/Hybrid Electric Vehicles (EVs/HEVs) and integration with electric grid in grid-connected photovoltaic (PV) converter. Performance of VSI is significantly impacted by the type of Pulse Width Modulation (PWM) method used.In this work, a new PWM method called 240° Clamped Space Vector PWM (240CPWM) is studied extensively. 240CPWM method has the major advantages of clamping a phase to the positive or negative rail for 240° in a fundamental period, clamping of two phases simultaneously at any given instant, and use of only active states, completely eliminating the zero states. These characteristics lead to a significant reduction in switching losses of the inverter and lower DC link capacitor current stress as compared to Conventional Space Vector PWM. A unique six pulse dynamically varying DC link voltage is required for 240CPWM instead of constant DC link voltage to maintain sinusoidal output voltage. Voltage mode control of DC-DC stage with Smith predictor is developed for shaping the dynamic DC link voltage that meets the requirements for fast control. Experimental results from a 10 kW hardware prototype with 10 kHz switching frequency validate the superior performance of 240CPWM in EV/HEV traction inverters focusing on loss reduction and DC link capacitor currents. Full load efficiency with the proposed 240CPWM for the DC-AC stage even with conventional Silicon devices exceeds 99%. Performance of 240CPWM is evaluated in three phase grid-connected PV converter. It is verified experimentally that 240CPWM performs well under adverse grid conditions like sag/swell and unbalance in grid voltages, and under a wide range of power factor. Undesired low frequency harmonics in inverter currents are minimized using the Harmonic Compensator that results in Total Harmonic Distortion (THD) of 3.5% with 240CPWM in compliance with grid interconnection standards. A new, combined performance index is proposed to compare the performance of different PWM schemes in terms of switching loss, THD, DC link current stress, Common Mode Voltage and leakage current. 240CPWM achieves the best value for this index among the PWM methods studied.
ContributorsQamar, Haleema (Author) / Ayyanar, Raja (Thesis advisor) / Yu, Hongbin (Committee member) / Lei, Qin (Committee member) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2022
171673-Thumbnail Image.png
Description
The performance of voltage source inverter (VSI) in terms of output waveform quality, conversion efficiency and common mode noise depends greatly on the pulse width modulation (PWM) method. In this work, a low-loss space vector PWM i.e., 240°-clamped space vector PWM (240CPWM) is proposed to improve the performance of VSIs

The performance of voltage source inverter (VSI) in terms of output waveform quality, conversion efficiency and common mode noise depends greatly on the pulse width modulation (PWM) method. In this work, a low-loss space vector PWM i.e., 240°-clamped space vector PWM (240CPWM) is proposed to improve the performance of VSIs in electric/hybrid electric vehicles (EV/HEVs) and grid connected photovoltaic (PV) systems. The salient features of 240CPWM include 240° clamping of each phase pole to positive or negative DC bus in a fundamental cycle ensuring that switching losses are reduced by a factor of seven as compared to conventional space vector PWM (CSVPWM) at unity power factor. Zero states are completely eliminated and only two nearest active states are used ensuring that there is no penalty in terms of total harmonic distortion (THD) in line current. The THD of the line current is analyzed using the notion of stator flux ripple and compared with conventional and discontinuous PWM method. Discontinuous PWM methods achieve switching loss reduction at the expense of higher THD while 240CPWM achieves a much greater loss reduction without impacting the THD. The analysis and performance of 240CPWM are validated on a 10 kW two-stage experimental prototype. Common mode voltage (CMV) and leakage current characteristics of 240CPWM are analyzed in detail. It is shown analytically that 240CPWM reduces the CMV and leakage current as compared to other PWM methods while simultaneously reducing the switching loss and THD. Experimental results from a 10-kW hardware prototype conform to the analytical discussions and validate the superior performance of 240CPWM. 240CPWM requires a six-pulse dynamic DC link voltage that introduces low frequency harmonics in DC input current and/or AC line currents that can affect maximum power point tracking, battery life or THD in line current. Four topologies have been proposed to minimize the low frequency harmonics in input and line currents in grid-connected PV system with 240CPWM. In order to achieve further benefits in terms of THD and device stress reduction, 240CPWM is extended to three-level inverters. The performance metrics such as THD and switching loss for 240CPWM are analyzed in three-level inverter.
ContributorsQamar, Hafsa (Author) / Ayyanar, Raja (Thesis advisor) / Yu, Hongbin (Committee member) / Lei, Qin (Committee member) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2022