This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

189408-Thumbnail Image.png
Description
The silicon-based solar cell has been extensively deployed in photovoltaic industry and plays an important role in renewable energy industries. A more energy-efficient, environment-harmless and eco-friendly silicon production technique is required for price-competitive solar energy harvesting. Silicon electrorefining in molten salt is promising for the ultrapure solar-grade Si production. To

The silicon-based solar cell has been extensively deployed in photovoltaic industry and plays an important role in renewable energy industries. A more energy-efficient, environment-harmless and eco-friendly silicon production technique is required for price-competitive solar energy harvesting. Silicon electrorefining in molten salt is promising for the ultrapure solar-grade Si production. To avoid using highly corrosive fluoride salt, CaCl2-based salt is widely employed for silicon electroreduction. For Si electroreduction in CaCl2-based salt, CaO is usually added to enhance the solubility of SiO2. However, the existence of oxygen in molten salt could result in system corrosion, anode passivation and the co-deposition of secondary phases such as CaSiO3 and SiO2 at the cathode. This research focuses on the development of reusable oxygen-free CaCl2-based molten salt for solar-grade silicon electrorefining. A new multi-potential electropurification process has been proposed and proven to be more effective in impurities removal. The as-received salt and the salt after electrorefining have been electropurified. The inductively-coupled plasma mass spectrometry and cyclic voltammetry have been utilized to determine the impurities removal of electropurification. The salt after silicon electrorefining has been regenerated to its original purity level before by the multi-potential electropurification process, demonstrating the feasibility of a reusable salt by electropurification. In an oxygen-free CaCl2-based salt without silicon precursor, the silicon dissolved from the silicon anode can be successfully deposited at the cathode. The silicon anode has been operated for more than 50 hours without passivation in the oxygen-free system. Silicon ions start to be deposited after 0.17 g of silicon has been dissolved into the salt from the silicon anode. A 180 µm deposit with a silver-luster surface was obtained at the cathode. The main impurities in the silicon anode such as aluminum, iron and titanium were not found in the silicon deposits. No oxygen-containing secondary phases are detected in the silicon deposits. These results confirm the feasibility of silicon electrorefining in the oxygen-free CaCl2-based salt.
ContributorsTseng, Mao-Feng (Author) / Tao, Meng (Thesis advisor) / Kannan, Arunachala Mada (Committee member) / Mu, Linqin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2023