This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

156779-Thumbnail Image.png
Description
This research summarizes the validation testing completed for the material model MAT213, currently implemented in the LS-DYNA finite element program. Testing was carried out using a carbon fiber composite material, T800-F3900. Stacked-ply tension and compression tests were performed for open-hole and full coupons. Comparisons of experimental and simulation results showed

This research summarizes the validation testing completed for the material model MAT213, currently implemented in the LS-DYNA finite element program. Testing was carried out using a carbon fiber composite material, T800-F3900. Stacked-ply tension and compression tests were performed for open-hole and full coupons. Comparisons of experimental and simulation results showed a good agreement between the two for metrics including, stress-strain response and displacements. Strains and displacements in the direction of loading were better predicted by the simulations than for that of the transverse direction.

Double cantilever beam and end notched flexure tests were performed experimentally and through simulations to determine the delamination properties of the material at the interlaminar layers. Experimental results gave the mode I critical energy release rate as having a range of 2.18 – 3.26 psi-in and the mode II critical energy release rate as 10.50 psi-in, both for the pre-cracked condition. Simulations were performed to calibrate other cohesive zone parameters required for modeling.

Samples of tested T800/F3900 coupons were processed and examined with scanning electron microscopy to determine and understand the underlying structure of the material. Tested coupons revealed damage and failure occurring at the micro scale for the composite material.
ContributorsHolt, Nathan T (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Hoover, Christian (Committee member) / Arizona State University (Publisher)
Created2018
171825-Thumbnail Image.png
Description
High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive

High-temperature mechanical behaviors of metal alloys and underlying microstructural variations responsible for such behaviors are essential areas of interest for many industries, particularly for applications such as jet engines. Anisotropic grain structures, change of preferred grain orientation, and other transformations of grains occur both during metal powder bed fusion additive manufacturing processes, due to variation of thermal gradient and cooling rates, and afterward during different thermomechanical loads, which parts experience in their specific applications, could also impact its mechanical properties both at room and high temperatures. In this study, an in-depth analysis of how different microstructural features, such as crystallographic texture, grain size, grain boundary misorientation angles, and inherent defects, as byproducts of electron beam powder bed fusion (EB-PBF) AM process, impact its anisotropic mechanical behaviors and softening behaviors due to interacting mechanisms. Mechanical testing is conducted for EB-PBF Ti6Al4V parts made at different build orientations up to 600°C temperature. Microstructural analysis using electron backscattered diffraction (EBSD) is conducted on samples before and after mechanical testing to understand the interacting impact that temperature and mechanical load have on the activation of certain mechanisms. The vertical samples showed larger grain sizes, with an average of 6.6 µm, a lower average misorientation angle, and subsequently lower strength values than the other two horizontal samples. Among the three strong preferred grain orientations of the α phases, <1 1 2 ̅ 1> and <1 1 2 ̅ 0> were dominant in horizontally built samples, whereas the <0 0 0 1> was dominant in vertically built samples. Thus, strong microstructural variation, as observed among different EB-PBF Ti6Al4V samples, mainly resulted in anisotropic behaviors. Furthermore, alpha grain showed a significant increase in average grain size for all samples with the increasing test temperature, especially from 400°C to 600°C, indicating grain growth and coarsening as potential softening mechanisms along with temperature-induced possible dislocation motion. The severity of internal and external defects on fatigue strength has been evaluated non-destructively using quantitative methods, i.e., Murakami’s square root of area parameter model and Basquin’s model, and the external surface defects were rendered to be more critical as potential crack initiation sites.
ContributorsMian, Md Jamal (Author) / Ladani, Leila (Thesis advisor) / Razmi, Jafar (Committee member) / Shuaib, Abdelrahman (Committee member) / Mobasher, Barzin (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2022
157967-Thumbnail Image.png
Description
This research summarizes the characterization of the constituent materials of a unidirectional composite for use in a finite element model. Specifically the T800s-F3900 composite from Toray Composites, Seattle, WA. Testing was carried out on cured polymer matrix provided by the manufacturer and single fiber specimen. The material model chosen for

This research summarizes the characterization of the constituent materials of a unidirectional composite for use in a finite element model. Specifically the T800s-F3900 composite from Toray Composites, Seattle, WA. Testing was carried out on cured polymer matrix provided by the manufacturer and single fiber specimen. The material model chosen for the polymer matrix was MAT 187 (Semi-Analytical Model for Polymers) which allowed for input of the tension, compression, and shear load responses.

The matrix was tested in tension, compression, and shear and was assumed to be isotropic. Ultimate strengths of the matrix were found to be 10 580 psi in tension, 25 900 psi in compression, and 5 940 in shear. The material properties calculated suggest the resin as being an isotropic material with the moduli in tension and compression being approximately equal (3% difference between the experimental values) and the shear modulus following typical isotropic relations. Single fiber properties were obtained for the T800s fiber in tension only with the modulus being approximately 40 500 ksi and the peak stress value being approximately 309 ksi.

The material model predicts the behavior of the multi-element testing simulations in both deformation and failure in the direction of loading.
ContributorsRobbins, Joshua (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Hoover, Christian (Committee member) / Arizona State University (Publisher)
Created2019
158184-Thumbnail Image.png
Description
There has been a renewed interest to understand the degradation mechanism of concrete under radiation as many nuclear reactors are reaching their expiration date. Much of the information on the degradation mechanism of concrete under radiation comes from the experiments, which are carried out on very small specimens. With the

There has been a renewed interest to understand the degradation mechanism of concrete under radiation as many nuclear reactors are reaching their expiration date. Much of the information on the degradation mechanism of concrete under radiation comes from the experiments, which are carried out on very small specimens. With the advent of finite element analysis, a numerical predictive tool is desired that can predict the extent of damage in the nuclear concrete structure.

A mesoscale micro-structural framework is proposed in Multiphysics Object-Oriented Simulation Environment (MOOSE) finite element framework which represents the first step in this direction. As part of the framework, a coupled creep damage algorithm was developed and implemented in MOOSE. The algorithm considers creep through rheological models, while damage evolves exponentially as a function of elastic strain and creep strain. A characteristic length is introduced in the formulation such that the energy release rate associated with each element remains the same to avoid vanishing energy dissipation with mesh refinement. A creep damage parameter quantifies the effect of creep strain on the damage that was calibrated using three-point bending experiments with varying rates of loading.

The creep damage model was also validated with restrained ring shrinkage tests on cementitious materials containing compliant/stiff inclusions subjected to variable drying conditions. The simulation approach explicitly considers: (i) moisture diffusion driven differential shrinkage along the depth of the specimen (ii) viscoelastic response of aging cementitious materials (iii) isotropic damage model with Rankine′s failure initiation criterion, and (iv) random distribution of tensile strengths of individual finite elements.

The model was finally validated with experimental results on neutron-irradiated concrete. The simulation approach considers: (i) coupled hygro-thermal model to predict the temperature and humidity profile inside the specimen (ii) radiation-induced volumetric expansion of aggregates (RIVE) (iii) thermal, shrinkage and creep effects based on the temperature and humidity profile and (iv) isotropic damage model with Rankine’s criterion to determine failure initiation.
ContributorsSaklani, Naman (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramanian (Committee member) / Mobasher, Barzin (Committee member) / Hoover, Christian (Committee member) / Chawla, Nikhilesh (Committee member) / Arizona State University (Publisher)
Created2020
Description
Layer-wise extrusion of soft-solid like cement pastes and mortars is commonly used in 3D printing of concrete. Rheological and mechanical characterization of the printable binder for on-demand flow and subsequent structuration is a critical challenge. This research is an effort to understand the mechanics of cementitious binders as soft solids

Layer-wise extrusion of soft-solid like cement pastes and mortars is commonly used in 3D printing of concrete. Rheological and mechanical characterization of the printable binder for on-demand flow and subsequent structuration is a critical challenge. This research is an effort to understand the mechanics of cementitious binders as soft solids in the fresh state, towards establishing material-process relationships to enhance print quality. This study introduces 3D printable binders developed based on rotational and capillary rheology test parameters, and establish the direct influence of packing coefficients, geometric ratio, slip velocities, and critical print velocities on the extrudate quality. The ratio of packing fraction to the square of average particle diameter (0.01-0.02), and equivalent microstructural index (5-20) were suitable for printing, and were directly related to the cohesion and extrusional yield stress of the material. In fact, steady state pressure for printing (30-40 kPa) is proportional to the extrusional yield stress, and increases with the geometric ratio (0-60) and print velocity (5-50 mm/s). Higher print velocities results in higher wall shear stresses and was exponentially related to the slip layer thickness (estimated between 1-5μ), while the addition of superplasticizers improve the slip layer thickness and the extrudate flow. However, the steady state pressure and printer capacity limits the maximum print velocity while the deadzone length limits the minimum velocity allowable (critical velocity regime) for printing. The evolution of buildability with time for the fresh state mortars was characterized with digital image correlation using compressive strain and strain rate in printed layers. The fresh state characteristics (interlayer and interfilamentous) and process parameters (layer height and fiber dimensions) influence the hardened mechanical properties. A lower layer height generally improves the mechanical properties and slight addition of fiber (up to 0.3% by volume) results in a 15-30% increase in the mechanical properties. 3D scanning and point-cloud analysis was also used to assess the geometric tolerance of a print based on mean error distances, print accuracy index, and layer-wise percent overlap. The research output will contribute to a synergistic material-process design and development of test methods for printability in the context of 3D printing of concrete.
ContributorsAmbadi Omanakuttan Nair, Sooraj Kumar (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam (Committee member) / Mobasher, Barzin (Committee member) / Hoover, Christian (Committee member) / Chawla, Nikhilesh (Committee member) / Arizona State University (Publisher)
Created2021