This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

168290-Thumbnail Image.png
Description
Glasses have many applications such as containers, substrates of displays, high strength fibers and portable electronic display panels. Their excellent mechanical properties such as high hardness, good forming ability and scratch resistance make glasses ideal for these applications. Many factors affect the selection of one glass over another for a

Glasses have many applications such as containers, substrates of displays, high strength fibers and portable electronic display panels. Their excellent mechanical properties such as high hardness, good forming ability and scratch resistance make glasses ideal for these applications. Many factors affect the selection of one glass over another for a given purpose such as cost, ingredients, scalability of manufacturing, etc. Typically, silicate based glasses are often selected because they satisfy most of the selection criteria. However, with the recent abundant use of these glasses in touch-based applications, understanding their abilities to dissipate energy due to surface contact loads has become increasingly desirable. The most common silicate glasses worldwide are glassy silica and soda lime. Calcium aluminosilicates are also gaining popularity due to their importance as substrates for display screens in electronic devices. The surface energy dissipation and strength of these glasses are based on several factors, but predominantly rely on ingredient composition and the so-called Indentation Size Effect (ISE), where the strength depends on the maximum surface force. Both the composition and ISE alter the strength and favored energy dissipation mechanisms of the glass. Unlocking the contribution of these mechanisms and elucidating their dependence on composition and force is the underlining goal of this thesis.Prior to cracking, silicate glasses can inelastically deform by shear and densification. However, the link between the mechanical properties, strength, glass structure and maximum force and the propensity by which either of these mechanisms are favored still remains unclear. In this study, the first aim is to elucidate the causes of the ISE and i explore the relationships between the ISE and the dissipation mechanisms, and identify what feature(s) of the glass can be used to infer their behavior. All glasses have shown a strong link between the ISE and shear flow and densification. Second, the link between composition and the dissipation mechanisms will be elucidated. This is accomplished by performing indentation tests coupled with an annealing method to independently quantify the amount of volume associated with each dissipation mechanism and elucidate relationships with ingredients and structure of the glasses. Some conclusions will then be presented that link all these behaviors together.
ContributorsKazembeyki, Maryam (Author) / Hoover, Christian G (Thesis advisor) / Rajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Chawla, Nikhilesh (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2021
158807-Thumbnail Image.png
Description
Ultra High Performance (UHP) cementitious binders are a class of cement-based materials with high strength and ductility, designed for use in precast bridge connections, bridge superstructures, high load-bearing structural members like columns, and in structural repair and strengthening. This dissertation aims to elucidate the chemo-mechanical relationships in complex UHP binders

Ultra High Performance (UHP) cementitious binders are a class of cement-based materials with high strength and ductility, designed for use in precast bridge connections, bridge superstructures, high load-bearing structural members like columns, and in structural repair and strengthening. This dissertation aims to elucidate the chemo-mechanical relationships in complex UHP binders to facilitate better microstructure-based design of these materials and develop machine learning (ML) models to predict their scale-relevant properties from microstructural information.To establish the connection between micromechanical properties and constitutive materials, nanoindentation and scanning electron microscopy experiments are performed on several cementitious pastes. Following Bayesian statistical clustering, mixed reaction products with scattered nanomechanical properties are observed, attributable to the low degree of reaction of the constituent particles, enhanced particle packing, and very low water-to-binder ratio of UHP binders. Relating the phase chemistry to the micromechanical properties, the chemical intensity ratios of Ca/Si and Al/Si are found to be important parameters influencing the incorporation of Al into the C-S-H gel.
ML algorithms for classification of cementitious phases are found to require only the intensities of Ca, Si, and Al as inputs to generate accurate predictions for more homogeneous cement pastes. When applied to more complex UHP systems, the overlapping chemical intensities in the three dominant phases – Ultra High Stiffness (UHS), unreacted cementitious replacements, and clinker – led to ML models misidentifying these three phases. Similarly, a reduced amount of data available on the hard and stiff UHS phases prevents accurate ML regression predictions of the microstructural phase stiffness using only chemical information. The use of generic virtual two-phase microstructures coupled with finite element analysis is also adopted to train MLs to predict composite mechanical properties. This approach applied to three different representations of composite materials produces accurate predictions, thus providing an avenue for image-based microstructural characterization of multi-phase composites such UHP binders. This thesis provides insights into the microstructure of the complex, heterogeneous UHP binders and the utilization of big-data methods such as ML to predict their properties. These results are expected to provide means for rational, first-principles design of UHP mixtures.
ContributorsFord, Emily Lucile (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Hoover, Christian G. (Committee member) / Maneparambil, Kailas (Committee member) / Arizona State University (Publisher)
Created2020
Description
Layer-wise extrusion of soft-solid like cement pastes and mortars is commonly used in 3D printing of concrete. Rheological and mechanical characterization of the printable binder for on-demand flow and subsequent structuration is a critical challenge. This research is an effort to understand the mechanics of cementitious binders as soft solids

Layer-wise extrusion of soft-solid like cement pastes and mortars is commonly used in 3D printing of concrete. Rheological and mechanical characterization of the printable binder for on-demand flow and subsequent structuration is a critical challenge. This research is an effort to understand the mechanics of cementitious binders as soft solids in the fresh state, towards establishing material-process relationships to enhance print quality. This study introduces 3D printable binders developed based on rotational and capillary rheology test parameters, and establish the direct influence of packing coefficients, geometric ratio, slip velocities, and critical print velocities on the extrudate quality. The ratio of packing fraction to the square of average particle diameter (0.01-0.02), and equivalent microstructural index (5-20) were suitable for printing, and were directly related to the cohesion and extrusional yield stress of the material. In fact, steady state pressure for printing (30-40 kPa) is proportional to the extrusional yield stress, and increases with the geometric ratio (0-60) and print velocity (5-50 mm/s). Higher print velocities results in higher wall shear stresses and was exponentially related to the slip layer thickness (estimated between 1-5μ), while the addition of superplasticizers improve the slip layer thickness and the extrudate flow. However, the steady state pressure and printer capacity limits the maximum print velocity while the deadzone length limits the minimum velocity allowable (critical velocity regime) for printing. The evolution of buildability with time for the fresh state mortars was characterized with digital image correlation using compressive strain and strain rate in printed layers. The fresh state characteristics (interlayer and interfilamentous) and process parameters (layer height and fiber dimensions) influence the hardened mechanical properties. A lower layer height generally improves the mechanical properties and slight addition of fiber (up to 0.3% by volume) results in a 15-30% increase in the mechanical properties. 3D scanning and point-cloud analysis was also used to assess the geometric tolerance of a print based on mean error distances, print accuracy index, and layer-wise percent overlap. The research output will contribute to a synergistic material-process design and development of test methods for printability in the context of 3D printing of concrete.
ContributorsAmbadi Omanakuttan Nair, Sooraj Kumar (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam (Committee member) / Mobasher, Barzin (Committee member) / Hoover, Christian (Committee member) / Chawla, Nikhilesh (Committee member) / Arizona State University (Publisher)
Created2021