This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

152285-Thumbnail Image.png
Description
Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 Ω/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.
ContributorsZhou, Bin (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013
153322-Thumbnail Image.png
Description
Inductors are fundamental components that do not scale well. Their physical limitations to scalability along with their inherent losses make them the main obstacle in achieving monolithic system-on-chip platform (SoCP). For past decades researchers focused on integrating magnetic materials into on-chip inductors in the quest of achieving high inductance density

Inductors are fundamental components that do not scale well. Their physical limitations to scalability along with their inherent losses make them the main obstacle in achieving monolithic system-on-chip platform (SoCP). For past decades researchers focused on integrating magnetic materials into on-chip inductors in the quest of achieving high inductance density and quality factor (QF). The state of the art on-chip inductor is made of an enclosed magnetic thin-film around the current carrying wire for maximum flux amplification. Though the integration of magnetic materials results in enhanced inductor characteristics, this approach has its own challenges and limitations especially in power applications. The current-induced magnetic field (HDC) drives the magnetic film into its saturation state. At saturation, inductance and QF drop to that of air-core inductors, eliminating the benefits of integrating magnetic materials. Increasing the current carrying capability without substantially sacrificing benefits brought on by the magnetic material is an open challenge in power applications. Researchers continue to address this challenge along with the continuous improvement in inductance and QF for RF and power applications.

In this work on-chip inductors incorporating magnetic Co-4%Zr-4%Ta -8%B thin films were fabricated and their characteristics were examined under the influence of an externally applied DC magnetic field. It is well established that spins in magnetic materials tend to align themselves in the same direction as the applied field. The resistance of the inductor resulting from the ferromagnetic film can be changed by manipulating the orientation of magnetization. A reduction in resistance should lead to decreases in losses and an enhancement in the QF. The effect of externally applied DC magnetic field along the easy and hard axes was thoroughly investigated. Depending on the strength and orientation of the externally applied field significant improvements in QF response were gained at the expense of a relative reduction in inductance. Characteristics of magnetic-based inductors degrade with current-induced stress. It was found that applying an externally low DC magnetic field across the on-chip inductor prevents the degradation in inductance and QF responses. Examining the effect of DC magnetic field on current carrying capability under low temperature is suggested.
ContributorsKhdour, Mahmoud (Author) / Yu, Hongbin (Thesis advisor) / Pan, George (Committee member) / Goryll, Michael (Committee member) / Bearat, Hamdallah (Committee member) / Arizona State University (Publisher)
Created2014
154015-Thumbnail Image.png
Description
The microelectronics technology has seen a tremendous growth over the past sixty years. The advancements in microelectronics, which shows the capability of yielding highly reliable and reproducible structures, have made the mass production of integrated electronic components feasible. Miniaturized, low-cost, and accurate sensors became available due to the rise of

The microelectronics technology has seen a tremendous growth over the past sixty years. The advancements in microelectronics, which shows the capability of yielding highly reliable and reproducible structures, have made the mass production of integrated electronic components feasible. Miniaturized, low-cost, and accurate sensors became available due to the rise of the microelectronics industry. A variety of sensors are being used extensively in many portable applications. These sensors are promising not only in research area but also in daily routine applications.

However, many sensing systems are relatively bulky, complicated, and expensive and main advantages of new sensors do not play an important role in practical applications. Many challenges arise due to intricacies for sensor packaging, especially operation in a solution environment. Additional problems emerge when interfacing sensors with external off-chip components. A large amount of research in the field of sensors has been focused on how to improve the system integration.

This work presents new methods for the design, fabrication, and integration of sensor systems. This thesis addresses these challenges, for example, interfacing microelectronic system to a liquid environment and developing a new technique for impedimetric measurement. This work also shows a new design for on-chip optical sensor without any other extra components or post-processing.
ContributorsLuo, Tao (Author) / Blain Christen, Jennifer (Thesis advisor) / Song, Hongjiang (Committee member) / Goryll, Michael (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2015
156416-Thumbnail Image.png
Description
ABSTRACT

Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully organic (PCDTBT:PC70BM), for integration

ABSTRACT

Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully organic (PCDTBT:PC70BM), for integration with electrochromic stacks.

Sputtered ZnO (2% Mn) films on ITO, with transparency in the visible range, were used to fabricate metal-semiconductor (MS), metal-insulator-semiconductor (MIS), and p-i-n heterojunction devices, and their photovoltaic conversion under ultraviolet (UV) illumination was evaluated with and without oxygen plasma-treated surface electrodes (Au, Ag, Al, and Ti/Ag). The MS Schottky parameters were fitted against the generalized Bardeen model to obtain the density of interface states (Dit ≈ 8.0×1011 eV−1cm−2) and neutral level (Eo ≈ -5.2 eV). These devices exhibited photoconductive behavior at λ = 365 nm, and low-noise Ag-ZnO detectors exhibited responsivity (R) and photoconductive gain (G) of 1.93×10−4 A/W and 6.57×10−4, respectively. Confirmed via matched-pair analysis, post-metallization, oxygen plasma treatment of Ag and Ti/Ag electrodes resulted in increased Schottky barrier heights, which maximized with a 2 nm SiO2 electron blocking layer (EBL), coupled with the suppression of recombination at the metal/semiconductor interface and blocking of majority carriers. For interdigitated devices under monochromatic UV-C illumination, the open-circuit voltage (Voc) was 1.2 V and short circuit current density (Jsc), due to minority carrier tunneling, was 0.68 mA/cm2.

A fully organic bulk heterojunction photovoltaic device, composed of poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyli2’,1’,3’-benzothiadiazole)]:phenyl-C71-butyric-acidmethyl (PCDTBT:PC70BM), with corresponding electron and hole transport layers, i.e., LiF with Al contact and conducting
on-conducting (nc) PEDOT:PSS (with ITO/PET or Ag nanowire/PDMS contacts; the illuminating side), respectively, was developed. The PCDTBT/PC70BM/PEDOT:PSS(nc)/ITO/PET stack exhibited the highest performance: power conversion efficiency (PCE) ≈ 3%, Voc = 0.9V, and Jsc ≈ 10-15 mA/cm2. These stacks exhibited high visible range transparency, and provided the requisite power for a switchable electrochromic stack having an inkjet-printed, optically-active layer of tungsten trioxide (WO3), peroxo-tungstic acid dihydrate, and titania (TiO2) nano-particle-based blend. The electrochromic stacks (i.e., PET/ITO/LiClO4/WO3 on ITO/PET and Ag nanowire/PDMS substrates) exhibited optical switching under external bias from the PV stack (or an electrical outlet), with 7 s coloration time, 8 s bleaching time, and 0.36-0.75 optical modulation at λ = 525 nm. The devices were paired using an Internet of Things controller that enabled wireless switching.
ContributorsAzhar, Ebraheem (Author) / Yu, Hongbin (Thesis advisor) / Dey, Sandwip (Thesis advisor) / Goryll, Michael (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
154556-Thumbnail Image.png
Description
To date, the most popular and dominant material for commercial solar cells is

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out

of all commercial solar cells. Although the potential of crystalline-Si solar cells in

supplying energy demands is enormous, their future growth will likely be constrained

by two

To date, the most popular and dominant material for commercial solar cells is

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out

of all commercial solar cells. Although the potential of crystalline-Si solar cells in

supplying energy demands is enormous, their future growth will likely be constrained

by two major bottlenecks. The first is the high electricity input to produce

crystalline-Si solar cells and modules, and the second is the limited supply of silver

(Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching

terawatt-scale deployment, which means the electricity produced by crystalline-Si

solar cells would never fulfill a noticeable portion of our energy demands in the future.

In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al)

electroplating has been developed as an alternative metallization technique in the

fabrication of crystalline-Si solar cells. The plating is carried out in a

near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been

found that dense, adherent Al deposits with resistivity in the high 10^–6 ohm-cm range

can be reproducibly obtained directly on Si substrates and nickel seed layers. An

all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al

back electrode, has been successfully demonstrated based on commercial p-type

monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further

optimization of the cell fabrication process, in particular a suitable patterning

technique for the front silicon nitride layer, is expected to increase the efficiency of

the cell to ~18%. This shows the potential of Al electroplating in cell metallization is

promising and replacing Ag with Al as the front finger electrode is feasible.
ContributorsSun, Wen-Cheng (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016
155877-Thumbnail Image.png
Description
Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct

bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared

to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D)

nanowires can have different electronic properties for potential novel applications.

In this work, we present the study of ZnTe

Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct

bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared

to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D)

nanowires can have different electronic properties for potential novel applications.

In this work, we present the study of ZnTe nanowires (NWs) that are synthesized

through a simple vapor-liquid-solid (VLS) method. By controlling the presence or

the absence of Au catalysts and controlling the growth parameters such as growth

temperature, various growth morphologies of ZnTe, such as thin films and nanowires

can be obtained. The characterization of the ZnTe nanostructures and films was

performed using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy

(EDX), high- resolution transmission electron microscope (HRTEM), X-ray

diffraction (XRD), photoluminescence (PL), Raman spectroscopy and light scattering

measurement. After confirming the crystal purity of ZnTe, two-terminal diodes and

three-terminal transistors were fabricated with both nanowire and planar nano-sheet

configurations, in order to correlate the nanostructure geometry to device performance

including field effect mobility, Schottky barrier characteristics, and turn-on

characteristics. Additionally, optoelectronic properties such as photoconductive gain

and responsivity were compared against morphology. Finally, ZnTe was explored in

conjunction with ZnO in order to form type-II band alignment in a core-shell nanostructure.

Various characterization techniques including scanning electron microscopy,

energy-dispersive X-ray spectroscopy , x-ray diffraction, Raman spectroscopy, UV-vis

reflectance spectra and photoluminescence were used to investigate the modification

of ZnO/ZnTe core/shell structure properties. In PL spectra, the eliminated PL intensity

of ZnO wires is primarily attributed to the efficient charge transfer process

occurring between ZnO and ZnTe, due to the band alignment in the core/shell structure. Moreover, the result of UV-vis reflectance spectra corresponds to the band

gap energy of ZnO and ZnTe, respectively, which confirm that the sample consists of

ZnO/ZnTe core/shell structure of good quality.
ContributorsPeng, Jhih-hong (Author) / Yu, Hongbin (Thesis advisor) / Roedel, Ronald (Committee member) / Goryll, Michael (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2017
168295-Thumbnail Image.png
Description
A general review of film growth with various mechanisms is given. Additives and their potential effects on film properties are also discussed. Experimental light-induced aluminum (Al) plating tool design is discussed. Light-induced electroplating of Al as the front electrode on the n-type emitter of silicon (Si) solar cells is proposed

A general review of film growth with various mechanisms is given. Additives and their potential effects on film properties are also discussed. Experimental light-induced aluminum (Al) plating tool design is discussed. Light-induced electroplating of Al as the front electrode on the n-type emitter of silicon (Si) solar cells is proposed as a substitute for screen-printed Silver (Ag). The advantages and disadvantages of Al over copper (Cu) as a suitable Ag replacement are examined. Optimization of the power given to a green laser for silicon nitride (SiNx) anitreflection coating patterning is performed. Laser damage and contamination removal conditions on post-patterned cell surfaces are identified. Plating and post-annealing temperature effects on Al morphology and film resistivity are explored. Morphology and resistivity improvement of the Al film are also investigated through several plating additives. The lowest resistivity of 3.1 µΩ-cm is given by nicotinic acid. Laser induced damage to the cell emitter experimentally limits the contact resistivity between light-induced Al and Si to approximately 69 mΩ-cm2. Phosphorus pentachloride (PCl5) is introduced into the plating bath and improved the the contact resistivity between light induced Al and Si to a range of 0.1-1 mΩ-cm2. Secondary ion mass spectroscopy (SIMS) was performed on a film deposited with PCl5 and showed a phosphorus peak, indicating emitter phosphorus concentration may be the reason for the low contact resistivity between light-induced Al and Si. SEM also shows that PCl5 improves Al film density and plating throwing power. Post plating annealing performed at a temperature of 500°C allows Al to spike through the thin n-type emitter causing cell failure. Atmospheric moisture causes poor process reproducibility.
ContributorsRicci, Lewis (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Kozicki, Michael (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2021
171929-Thumbnail Image.png
Description
The strong demand for the advancing of Moore’s law on device size scaling down has accelerated the miniaturization of passive devices. Among these important electronic components, inductors are facing challenges because the inductance value, which is strongly dependent on the coil number for the air core inductor case, will be

The strong demand for the advancing of Moore’s law on device size scaling down has accelerated the miniaturization of passive devices. Among these important electronic components, inductors are facing challenges because the inductance value, which is strongly dependent on the coil number for the air core inductor case, will be sacrificed when the size is shrinking. Adding magnetic core is one of the solutions due to its enhancement of inductance density but it will also add complexity to the fabrication process, and the core loss induced by the eddy current at high frequency is another drawback. In this report, the output of this research will be presented, which has three parts. In the first part, the CoZrTaB thin films are sputtered on different substrates and characterized comprehensively. The laminated CoZrTaB thin films have been also investigated, showing low coercivity and anisotropy field on both Si and polyimide substrates. Also, the different process conditions that could affect the magnetic properties are investigated. In the second part, Ansys Maxwell software is used to optimize the lamination profile and the magnetic core inductor structure. The measured M-H loop is imported to improve the simulation accuracy. In the third part, a novel method to fabricate the magnetic core inductors on flexible substrates is proposed. The sandwich magnetic core inductor is fabricated and assembled with flipchip bonder. The measurement result shows that this single-turn magnetic core inductor can achieve up to 24% inductance enhancement and quality factor of 7.42. The super low DC resistance (< 60 mΩ) proves that it is a good candidate to act as the passive component in the power delivery module and the use of polyimide-based substrate extends its compatibility to more packaging form factors.
ContributorsWu, Yanze (Author) / Yu, Hongbin (Thesis advisor) / Chickamenahalli, Shamala (Committee member) / Rizzo, Nicholas (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2022
193513-Thumbnail Image.png
Description
Since the invention of the automobile, engineers have been designing and making newer and newer improvements to them in order to provide customers with safer, faster, more reliable, and more comfortable vehicles. With each new generation, new technology can be seen being introduced into mainstream products, one of which that

Since the invention of the automobile, engineers have been designing and making newer and newer improvements to them in order to provide customers with safer, faster, more reliable, and more comfortable vehicles. With each new generation, new technology can be seen being introduced into mainstream products, one of which that is currently being pushed is that of autonomy. Established brand manufacturers and small research teams have been dedicated for years to find a way to make the automobile autonomous with none of them being able to confidently answer that they have found a solution. Among the engineering community there are two schools of thought when solving this issue: camera and LiDAR; some believe that only cameras and computer vision are required while other believe that LiDAR is the solution. The most optimal case is to use both cameras and LiDAR’s together in order to increase reliability and ensure data confidence. Designers are reluctant to use LiDAR systems due to their massive weight, cost, and complexity; with too many moving components, these systems are very bulky and have multiple costly, moving parts that eventually need replacement due to their constant motion. The solution to this problem is to develop a solid-state LiDAR system which would solve all those issues previously stated and this research takes it one level further and looks into a potential prototype for a solid-state camera and Lidar package. Currently no manufacturer offers a system that contains a solid-state LiDAR system and a solid-state camera with computing capabilities, all manufacturers provided either just the camera, just the Lidar, or just the computation ability. This design will also use of the shelf COTS parts in order to increase reproducibility for open-source development and to reduce total manufacturing cost. While keeping costs low, this design is also able to keep its specs and performance on par with that of a well-used commercial product, the Velodyne VL50.
ContributorsEltohamy, Gamal (Author) / Yu, Hongbin (Thesis advisor) / Goryll, Michael (Committee member) / Allee, David (Committee member) / Arizona State University (Publisher)
Created2024