This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151306-Thumbnail Image.png
Description
Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of

Over the past fifty years, the development of sensors for biological applications has increased dramatically. This rapid growth can be attributed in part to the reduction in feature size, which the electronics industry has pioneered over the same period. The decrease in feature size has led to the production of microscale sensors that are used for sensing applications, ranging from whole-body monitoring down to molecular sensing. Unfortunately, sensors are often developed without regard to how they will be integrated into biological systems. The complexities of integration are underappreciated. Integration involves more than simply making electrical connections. Interfacing microscale sensors with biological environments requires numerous considerations with respect to the creation of compatible packaging, the management of biological reagents, and the act of combining technologies with different dimensions and material properties. Recent advances in microfluidics, especially the proliferation of soft lithography manufacturing methods, have established the groundwork for creating systems that may solve many of the problems inherent to sensor-fluidic interaction. The adaptation of microelectronics manufacturing methods, such as Complementary Metal-Oxide-Semiconductor (CMOS) and Microelectromechanical Systems (MEMS) processes, allows the creation of a complete biological sensing system with integrated sensors and readout circuits. Combining these technologies is an obstacle to forming complete sensor systems. This dissertation presents new approaches for the design, fabrication, and integration of microscale sensors and microelectronics with microfluidics. The work addresses specific challenges, such as combining commercial manufacturing processes into biological systems and developing microscale sensors in these processes. This work is exemplified through a feedback-controlled microfluidic pH system to demonstrate the integration capabilities of microscale sensors for autonomous microenvironment control.
ContributorsWelch, David (Author) / Blain Christen, Jennifer (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Frakes, David (Committee member) / LaBelle, Jeffrey (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2012
191704-Thumbnail Image.png
Description
Neurological disorders are the leading cause of physical and cognitive declineglobally and affect nearly 15% of the current worldwide population. These disorders include, but are not limited to, epilepsy, Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. With the aging population, an increase in the prevalence of neurodegenerative disorders is expected. Electrophysiological monitoring of

Neurological disorders are the leading cause of physical and cognitive declineglobally and affect nearly 15% of the current worldwide population. These disorders include, but are not limited to, epilepsy, Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. With the aging population, an increase in the prevalence of neurodegenerative disorders is expected. Electrophysiological monitoring of neural signals has been the gold standard for clinicians in diagnosing and treating neurological disorders. However, advances in detection and stimulation techniques have paved the way for relevant information not seen by standard procedures to be captured and used in patient treatment. Amongst these advances have been improved analysis of higher frequency activity and the increased concentration of alternative biomarkers, specifically pH change, during states of increased neural activity. The design and fabrication of devices with the ability to reliably interface with the brain on multiple scales and modalities has been a significant challenge. This dissertation introduces a novel, concentric, multi-scale micro-ECoG array for neural applications specifically designed for seizure detection in epileptic patients. This work investigates simultaneous detection and recording of adjacent neural tissue using electrodes of different sizes during neural events. Signal fidelity from electrodes of different sizes during in vivo experimentation are explored and analyzed to highlight the advantages and disadvantages of using varying electrode sizes. Furthermore, the novel multi-scale array was modified to perform multi-analyte detection experiments of pH change and electrophysiological activity on the cortical surface during epileptic events. This device highlights the ability to accurately monitor relevant information from multiple electrode sizes and concurrently monitor multiple biomarkers during clinical periods in one procedure that typically requires multiple surgeries.
ContributorsAkamine, Ian (Author) / Blain Christen, Jennifer (Thesis advisor) / Abbas, Jimmy (Committee member) / Muthuswamy, Jitendran (Committee member) / Goryll, Michael (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2024