This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

158748-Thumbnail Image.png
Description
Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively less value in clinical application. In this dissertation, a wireless

Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively less value in clinical application. In this dissertation, a wireless wearable sensor on a paper substrate is developed to continuously characterize respiratory behavior and deliver clinically relevant parameters, contributing to asthma control. Based on the anatomical analysis and experimental results, the optimum site for the wireless wearable sensor is on the midway of the xiphoid process and the costal margin, corresponding to the abdomen-apposed rib cage. At the wearing site, the linear strain change during respiration is measured and converted to lung volume by the wireless wearable sensor utilizing a distance-elapsed ultrasound. An on-board low-power Bluetooth module transmits the temporal lung volume change to a smartphone, where a custom-programmed app computes to show the clinically relevant parameters, such as forced vital capacity (FVC) and forced expiratory volume delivered in the first second (FEV1) and the FEV1/FVC ratio. Enhanced by a simple, yet effective machine-learning algorithm, a system consisting of two wireless wearable sensors accurately extracts respiratory features and classifies the respiratory behavior within four postures among different subjects, demonstrating that the respiratory behaviors are individual- and posture-dependent contributing to monitoring the posture-related respiratory diseases. The continuous and accurate monitoring of respiratory behaviors can track the respiratory disorders and diseases' progression for timely and objective approaches for control and management.
ContributorsChen, Ang (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Allee, David (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2020
158814-Thumbnail Image.png
Description
The recording of biosignals enables physicians to correctly diagnose diseases and prescribe treatment. Existing wireless systems failed to effectively replace the conventional wired methods due to their large sizes, high power consumption, and the need to replace batteries. This thesis aims to alleviate these issues by presenting a series of

The recording of biosignals enables physicians to correctly diagnose diseases and prescribe treatment. Existing wireless systems failed to effectively replace the conventional wired methods due to their large sizes, high power consumption, and the need to replace batteries. This thesis aims to alleviate these issues by presenting a series of wireless fully-passive sensors for the acquisition of biosignals: including neuropotential, biopotential, intracranial pressure (ICP), in addition to a stimulator for the pacing of engineered cardiac cells. In contrast to existing wireless biosignal recording systems, the proposed wireless sensors do not contain batteries or high-power electronics such as amplifiers or digital circuitries. Instead, the RFID tag-like sensors utilize a unique radiofrequency (RF) backscattering mechanism to enable wireless and battery-free telemetry of biosignals with extremely low power consumption. This characteristic minimizes the risk of heat-induced tissue damage and avoids the need to use any transcranial/transcutaneous wires, and thus significantly enhances long-term safety and reliability. For neuropotential recording, a small (9mm x 8mm), biocompatible, and flexible wireless recorder is developed and verified by in vivo acquisition of two types of neural signals, the somatosensory evoked potential (SSEP) and interictal epileptic discharges (IEDs). For wireless multichannel neural recording, a novel time-multiplexed multichannel recording method based on an inductor-capacitor delay circuit is presented and tested, realizing simultaneous wireless recording from 11 channels in a completely passive manner. For biopotential recording, a wearable and flexible wireless sensor is developed, achieving real-time wireless acquisition of ECG, EMG, and EOG signals. For ICP monitoring, a very small (5mm x 4mm) wireless ICP sensor is designed and verified both in vitro through a benchtop setup and in vivo through real-time ICP recording in rats. Finally, for cardiac cell stimulation, a flexible wireless passive stimulator, capable of delivering stimulation current as high as 60 mA, is developed, demonstrating successful control over the contraction of engineered cardiac cells. The studies conducted in this thesis provide information and guidance for future translation of wireless fully-passive telemetry methods into actual clinical application, especially in the field of implantable and wearable electronics.
ContributorsLiu, Shiyi (Author) / Christen, Jennifer (Thesis advisor) / Nikkhah, Mehdi (Committee member) / Phillips, Stephen (Committee member) / Cao, Yu (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2020