This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
149317-Thumbnail Image.png
Description
Protein crystallization has become an extremely important tool in biochemistry since the first structure of the protein Myoglobin was solved in 1958. Survival of motor neuron protein has proved to be an elusive target in regards to producing crystals of sufficient quality for X-ray diffraction. One form of Survival of

Protein crystallization has become an extremely important tool in biochemistry since the first structure of the protein Myoglobin was solved in 1958. Survival of motor neuron protein has proved to be an elusive target in regards to producing crystals of sufficient quality for X-ray diffraction. One form of Survival of motor neuron protein has been found to be a cause of the disease Spinal Muscular Atrophy that currently affects 1 in 6000 live births. The production, purification and crystallization of Survival of motor neuron protein are detailed. The Fenna-Matthews-Olson (FMO) protein from Pelodictyon phaeum is responsible for the transfer of energy from the chlorosome complex to the reaction center of the bacteria. The three-dimensional structure of the protein has been solved to a resolution of 2.0Å with the Rwork and Rfree values being 16.6% and 19.9% respectively. This new structure is compared to the FMO protein structures of Prosthecocholoris aestuarii 2K and Chlorobium tepidum. The early structures of FMO contained seven bacteriochlorophyll-a (BChl) molecules but the recent discovery that there is an eighth BChl molecule in Ptc. aestuarii 2K and Cbl. tepidum and now in Pld. phaeum requires that the energy transfer mechanism be reexamined. Simulated spectra are fitted to the experimental optical spectra to determine how the BChl molecules transfer energy through the protein. The inclusion of the eighth BChl molecule within these simulations may have an impact on how energy transfer through FMO can be described. In conclusion, a reliable method of purifying and crystallizing the SMNWT protein is detailed, the placement of the 8th BChl-a within the electron density and the implications on energy transfer within the FMO protein when the 8th BChl-a is included from the green sulfur bacteria Pld. phaeum is discussed.
ContributorsLarson, Chadwick R (Author) / Allen, James P. (Thesis advisor) / Francisco, Wilson (Committee member) / Chen, Julian (Committee member) / Arizona State University (Publisher)
Created2010