This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

151653-Thumbnail Image.png
Description
Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.
ContributorsMeng, Yunsong (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2013
151173-Thumbnail Image.png
Description
While developing autonomous intelligent robots has been the goal of many research programs, a more practical application involving intelligent robots is the formation of teams consisting of both humans and robots. An example of such an application is search and rescue operations where robots commanded by humans are sent to

While developing autonomous intelligent robots has been the goal of many research programs, a more practical application involving intelligent robots is the formation of teams consisting of both humans and robots. An example of such an application is search and rescue operations where robots commanded by humans are sent to environments too dangerous for humans. For such human-robot interaction, natural language is considered a good communication medium as it allows humans with less training about the robot's internal language to be able to command and interact with the robot. However, any natural language communication from the human needs to be translated to a formal language that the robot can understand. Similarly, before the robot can communicate (in natural language) with the human, it needs to formulate its communique in some formal language which then gets translated into natural language. In this paper, I develop a high level language for communication between humans and robots and demonstrate various aspects through a robotics simulation. These language constructs borrow some ideas from action execution languages and are grounded with respect to simulated human-robot interaction transcripts.
ContributorsLumpkin, Barry Thomas (Author) / Baral, Chitta (Thesis advisor) / Lee, Joohyung (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2012
154003-Thumbnail Image.png
Description
Most embedded applications are constructed with multiple threads to handle concurrent events. For optimization and debugging of the programs, dynamic program analysis is widely used to collect execution information while the program is running. Unfortunately, the non-deterministic behavior of multithreaded embedded software makes the dynamic analysis difficult. In addition, instrumentation

Most embedded applications are constructed with multiple threads to handle concurrent events. For optimization and debugging of the programs, dynamic program analysis is widely used to collect execution information while the program is running. Unfortunately, the non-deterministic behavior of multithreaded embedded software makes the dynamic analysis difficult. In addition, instrumentation overhead for gathering execution information may change the execution of a program, and lead to distorted analysis results, i.e., probe effect. This thesis presents a framework that tackles the non-determinism and probe effect incurred in dynamic analysis of embedded software. The thesis largely consists of three parts. First of all, we discusses a deterministic replay framework to provide reproducible execution. Once a program execution is recorded, software instrumentation can be safely applied during replay without probe effect. Second, a discussion of probe effect is presented and a simulation-based analysis is proposed to detect execution changes of a program caused by instrumentation overhead. The simulation-based analysis examines if the recording instrumentation changes the original program execution. Lastly, the thesis discusses data race detection algorithms that help to remove data races for correctness of the replay and the simulation-based analysis. The focus is to make the detection efficient for C/C++ programs, and to increase scalability of the detection on multi-core machines.
ContributorsSong, Young Wn (Author) / Lee, Yann-Hang (Thesis advisor) / Shrivastava, Aviral (Committee member) / Fainekos, Georgios (Committee member) / Lee, Joohyung (Committee member) / Arizona State University (Publisher)
Created2015
154004-Thumbnail Image.png
Description
Cisco estimates that by 2020, 50 billion devices will be connected to the Internet. But 99% of the things today remain isolated and unconnected. Different connectivity protocols, proprietary access, varied device characteristics, security concerns are the main reasons for that isolated state. This project aims at designing and building a

Cisco estimates that by 2020, 50 billion devices will be connected to the Internet. But 99% of the things today remain isolated and unconnected. Different connectivity protocols, proprietary access, varied device characteristics, security concerns are the main reasons for that isolated state. This project aims at designing and building a prototype gateway that exposes a simple and intuitive HTTP Restful interface to access and manipulate devices and the data that they produce while addressing most of the issues listed above. Along with manipulating devices, the framework exposes sensor data in such a way that it can be used to create applications like rules or events that make the home smarter. It also allows the user to represent high-level knowledge by aggregating the low-level sensor data. This high-level representation can be considered as a property of the environment or object rather than the sensor itself which makes interpreting the values more intuitive and accessible.
ContributorsNair, Shankar (Author) / Lee, Yann-Hang (Thesis advisor) / Lee, Joohyung (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
154648-Thumbnail Image.png
Description
Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to facilitate automated reasoning about this knowledge. Often in real-world domains, it is necessary to perform defeasible reasoning when representing default

Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to facilitate automated reasoning about this knowledge. Often in real-world domains, it is necessary to perform defeasible reasoning when representing default behaviors of systems. Answer Set Programming is a widely-used knowledge representation framework that is well-suited for such reasoning tasks and has been successfully applied to practical domains due to efficient computation through grounding--a process that replaces variables with variable-free terms--and propositional solvers similar to SAT solvers. However, some domains provide a challenge for grounding-based methods such as domains requiring reasoning about continuous time or resources.

To address these domains, there have been several proposals to achieve efficiency through loose integrations with efficient declarative solvers such as constraint solvers or satisfiability modulo theories solvers. While these approaches successfully avoid substantial grounding, due to the loose integration, they are not suitable for performing defeasible reasoning on functions. As a result, this expressive reasoning on functions must either be performed using predicates to simulate the functions or in a way that is not elaboration tolerant. Neither compromise is reasonable; the former suffers from the grounding bottleneck when domains are large as is often the case in real-world domains while the latter necessitates encodings to be non-trivially modified for elaborations.

This dissertation presents a novel framework called Answer Set Programming Modulo Theories (ASPMT) that is a tight integration of the stable model semantics and satisfiability modulo theories. This framework both supports defeasible reasoning about functions and alleviates the grounding bottleneck. Combining the strengths of Answer Set Programming and satisfiability modulo theories enables efficient continuous reasoning while still supporting rich reasoning features such as reasoning about defaults and reasoning in domains with incomplete knowledge. This framework is realized in two prototype implementations called MVSM and ASPMT2SMT, and the latter was recently incorporated into a non-monotonic spatial reasoning system. To define the semantics of this framework, we extend the first-order stable model semantics by Ferraris, Lee and Lifschitz to allow "intensional functions" and provide analyses of the theoretical properties of this new formalism and on the relationships between this and existing approaches.
ContributorsBartholomew, Michael James (Author) / Lee, Joohyung (Thesis advisor) / Bazzi, Rida (Committee member) / Colbourn, Charles (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2016
155536-Thumbnail Image.png
Description
Several physical systems exist in the real world that involve continuous as well as discrete changes. These range from natural dynamic systems like the system of a bouncing ball to robotic dynamic systems such as planning the motion of a robot across obstacles. The key aspects of effectively describing such

Several physical systems exist in the real world that involve continuous as well as discrete changes. These range from natural dynamic systems like the system of a bouncing ball to robotic dynamic systems such as planning the motion of a robot across obstacles. The key aspects of effectively describing such dynamic systems is to be able to plan and verify the evolution of the continuous components of the system while simultaneously maintaining critical constraints. Developing a framework that can effectively represent and find solutions to such physical systems prove to be highly advantageous. Both hybrid automata and action languages are formal models for describing the evolution of dynamic systems. The action language C+ is a rich and expressive language framework to formalize physical systems, but can be used only with physical systems in the discrete domain and is limited in its support of continuous domain components of such systems. Hybrid Automata is a well established formalism used to represent such complex physical systems at a theoretical level, however it is not expressive enough to capture the complex relations between the components of the system the way C+ does.

This thesis will focus on establishing a formal relationship between these two formalisms by showing how to succinctly represent Hybrid Automata in an action language which in turn is defined as a high-level notation for answer set programming modulo theories (ASPMT) --- an extension of answer set programs in the first-order level. Furthermore, this encoding framework is shown to be more effective and expressive than Hybrid Automata by highlighting its ability in allowing states of a hybrid transition system to be defined by complex relations among components that would otherwise be abstracted away in Hybrid Automata. The framework is further realized in the implementation of the system CPLUS2ASPMT, which takes advantage of state of the art ODE(Ordinary Differential Equations) based SMT solver dReal to provide support for ODE based evolution of continuous components of a dynamic system.
ContributorsLoney, Nikhil (Author) / Lee, Joohyung (Thesis advisor) / Fainekos, Georgios (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2017
157772-Thumbnail Image.png
Description
Computational models for relatively complex systems are subject to many difficulties, among which is the ability for the models to be discretely understandable and applicable to specific problem types and their solutions. This demands the specification of a dynamic system as a collection of models, including metamodels. In this context,

Computational models for relatively complex systems are subject to many difficulties, among which is the ability for the models to be discretely understandable and applicable to specific problem types and their solutions. This demands the specification of a dynamic system as a collection of models, including metamodels. In this context, new modeling approaches and tools can help provide a richer understanding and, therefore, the development of sophisticated behavior in system dynamics. From this vantage point, an activity specification is proposed as a modeling approach based on a time-based discrete event system abstraction. Such models are founded upon set-theoretic principles and methods for modeling and simulation with the intent of making them subject to specific and profound questions for user-defined experiments.

Because developing models is becoming more time-consuming and expensive, some research has focused on the acquisition of concrete means targeted at the early stages of component-based system analysis and design. The model-driven architecture (MDA) framework provides some means for the behavioral modeling of discrete systems. The development of models can benefit from simplifications and elaborations enabled by the MDA meta-layers, which is essential for managing model complexity. Although metamodels pose difficulties, especially for developing complex behavior, as opposed to structure, they are advantageous and complementary to formal models and concrete implementations in programming languages.

The developed approach is focused on action and control concepts across the MDA meta-layers and is proposed for the parallel Discrete Event System Specification (P-DEVS) formalism. The Unified Modeling Language (UML) activity meta-models are used with syntax and semantics that conform to the DEVS formalism and its execution protocol. The notions of the DEVS component and state are used together according to their underlying system-theoretic foundation. A prototype tool supporting activity modeling was developed to demonstrate the degree to which action-based behavior can be modeled using the MDA and DEVS. The parallel DEVS, as a formal approach, supports identifying the semantics of the UML activities. Another prototype was developed to create activity models and support their execution with the DEVS-Suite simulator, and a set of prototypical multiprocessor architecture model specifications were designed, simulated, and analyzed.
ContributorsAlshareef, Abdurrahman (Author) / Sarjoughian, Hessam S. (Thesis advisor) / Fainekos, Georgios (Committee member) / Lee, Joohyung (Committee member) / Zhao, Ming (Committee member) / Arizona State University (Publisher)
Created2019