This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

149953-Thumbnail Image.png
Description
The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS), the $\ell_1$ minimization problem attracts more attention for its ability

The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS), the $\ell_1$ minimization problem attracts more attention for its ability to exploit sparsity. Traditional interior point methods encounter difficulties in computation for solving the CS applications. In the first part of this work, a fast algorithm based on the augmented Lagrangian method for solving the large-scale TV-$\ell_1$ regularized inverse problem is proposed. Specifically, by taking advantage of the separable structure, the original problem can be approximated via the sum of a series of simple functions with closed form solutions. A preconditioner for solving the block Toeplitz with Toeplitz block (BTTB) linear system is proposed to accelerate the computation. An in-depth discussion on the rate of convergence and the optimal parameter selection criteria is given. Numerical experiments are used to test the performance and the robustness of the proposed algorithm to a wide range of parameter values. Applications of the algorithm in magnetic resonance (MR) imaging and a comparison with other existing methods are included. The second part of this work is the application of the TV-$\ell_1$ model in source localization using sensor arrays. The array output is reformulated into a sparse waveform via an over-complete basis and study the $\ell_p$-norm properties in detecting the sparsity. An algorithm is proposed for minimizing a non-convex problem. According to the results of numerical experiments, the proposed algorithm with the aid of the $\ell_p$-norm can resolve closely distributed sources with higher accuracy than other existing methods.
ContributorsShen, Wei (Author) / Mittlemann, Hans D (Thesis advisor) / Renaut, Rosemary A. (Committee member) / Jackiewicz, Zdzislaw (Committee member) / Gelb, Anne (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2011
168545-Thumbnail Image.png
Description新世纪以来中国电影的产业化改革与探索愈发呈现良好的态势,国产院线电影也在实践中努力赢得观众和票房市场。其中类型喜剧电影,最符合商业电影规律、最顺应影视市场需求、最能获得票房收益而备受影视创投机构、制作公司青睐。本论文研究对象聚焦类型喜剧电影,通过“欢声笑语里的财富”现象,探究类型喜剧电影内部本体构成要素与外部客观促成要素的关联;以通过分析自变量与因变量因素对中国电影票房之类型喜剧影响因素进行实证研究,为影视创投和影视制作总结并提供可靠建议。 本论文整体结构包括:第一部分为导论,包括研究背景、目的意义,相关文献综述与文献评述和论文创新性。第二部分聚焦类型喜剧本身,从电影学范畴的电影本体出发,探究“笑”的心理、社会与文化内涵,并分析将“笑”对经济领域的延伸。第三部分以影视投资、票房为依托,从现象和数据中探寻影响类型喜剧电影的因素,为展开中国电影票房之类型喜剧影响因素实证研究做好理论的铺垫。第四与第五部分则基于上述理论进行实证检验,选用2013-2020年电影样本,采用多元线性回归模型研究喜剧类型对票房的吸引力,以及不同种类型喜剧对电影票房的提振效果作用差异。研究发现喜剧电影对电影票房有显著的提振作用;以及研究电影的外部影响因素(续集效应)对电影票房的作用。发现续集电影有更好的票房表现,续集效应的票房提升作用在喜剧电影中表现的更加明显。 本论文研究成果最终将回归到“欢声笑语里的财富”本身;即“类型复合喜剧”对促进电影与金融产业的互动关联、实现更加可持续化发展,以及进而推动经济及文化业的发展。
ContributorsLiu, Yongqian (Author) / Shen, Wei (Thesis advisor) / Zhu, Ning (Thesis advisor) / Dong, Xiaodan (Committee member) / Arizona State University (Publisher)
Created2022