This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

151004-Thumbnail Image.png
Description
The overall contribution of the Minerva Initiative at ASU is to map social organizations in a multidimensional space that provides a measure of their radical or counter radical influence over the demographics of a nation. This tool serves as a simple content management system to store and track project resources

The overall contribution of the Minerva Initiative at ASU is to map social organizations in a multidimensional space that provides a measure of their radical or counter radical influence over the demographics of a nation. This tool serves as a simple content management system to store and track project resources like documents, images, videos and web links. It provides centralized and secure access to email conversations among project team members. Conversations are categorized into one of the seven pre-defined categories. Each category is associated with a certain set of keywords and we follow a frequency based approach for matching email conversations with the categories. The interface is hosted as a web application which can be accessed by the project team.
ContributorsNair, Apurva Aravindakshan (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2012
149518-Thumbnail Image.png
Description
Embedded Networked Systems (ENS) consist of various devices, which are embedded into physical objects (e.g., home appliances, vehicles, buidlings, people). With rapid advances in processing and networking technologies, these devices can be fully connected and pervasive in the environment. The devices can interact with the physical world, collaborate to share

Embedded Networked Systems (ENS) consist of various devices, which are embedded into physical objects (e.g., home appliances, vehicles, buidlings, people). With rapid advances in processing and networking technologies, these devices can be fully connected and pervasive in the environment. The devices can interact with the physical world, collaborate to share resources, and provide context-aware services. This dissertation focuses on collaboration in ENS to provide smart services. However, there are several challenges because the system must be - scalable to a huge number of devices; robust against noise, loss and failure; and secure despite communicating with strangers. To address these challenges, first, the dissertation focuses on designing a mobile gateway called Mobile Edge Computing Device (MECD) for Ubiquitous Sensor Networks (USN), a type of ENS. In order to reduce communication overhead with the server, an MECD is designed to provide local and distributed management of a network and data associated with a moving object (e.g., a person, car, pet). Furthermore, it supports collaboration with neighboring MECDs. The MECD is developed and tested for monitoring containers during shipment from Singapore to Taiwan and reachability to the remote server was a problem because of variance in connectivity (caused by high temperature variance) and high interference. The unreachability problem is addressed by using a mesh networking approach for collaboration of MECDs in sending data to a server. A hierarchical architecture is proposed in this regard to provide multi-level collaboration using dynamic mesh networks of MECDs at one layer. The mesh network is evaluated for an intelligent container scenario and results show complete connectivity with the server for temperature range from 25°C to 65°C. Finally, the authentication of mobile and pervasive devices in ENS for secure collaboration is investigated. This is a challenging problem because mutually unknown devices must be verified without knowledge of each other's identity. A self-organizing region-based authentication technique is proposed that uses environmental sound to autonomously verify if two devices are within the same region. The experimental results show sound could accurately authenticate devices within a small region.
ContributorsKim, Su-jin (Author) / Gupta, Sandeep K. S. (Thesis advisor) / Dasgupta, Partha (Committee member) / Davulcu, Hasan (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2010
153942-Thumbnail Image.png
Description
This report investigates the improvement in the transmission throughput, when fountain codes are used in opportunistic data routing, for a proposed delay tolerant network to connect remote and isolated communities in the Amazon region in Brazil, to the main city of that area. To extend healthcare facilities to the remote

This report investigates the improvement in the transmission throughput, when fountain codes are used in opportunistic data routing, for a proposed delay tolerant network to connect remote and isolated communities in the Amazon region in Brazil, to the main city of that area. To extend healthcare facilities to the remote and isolated communities, on the banks of river Amazon in Brazil, the network [7] utilizes regularly schedules boats as data mules to carry data from one city to other.

Frequent thunder and rain storms, given state of infrastructure and harsh geographical terrain; all contribute to increase in chances of massages not getting delivered to intended destination. These regions have access to medical facilities only through sporadic visits from medical team from the main city in the region, Belem. The proposed network uses records for routine clinical examinations such as ultrasounds on pregnant women could be sent to the doctors in Belem for evaluation.

However, due to the lack of modern communication infrastructure in these communities and unpredictable boat schedules due to delays and breakdowns, as well as high transmission failures due to the harsh environment in the region, mandate the design of robust delay-tolerant routing algorithms. The work presented here incorporates the unpredictability of the Amazon riverine scenario into the simulation model - accounting for boat mechanical failure in boats leading to delays/breakdowns, possible decrease in transmission speed due to rain and individual packet losses.



Extensive simulation results are presented, to evaluate the proposed approach and to verify that the proposed solution [7] could be used as a viable mode of communication, given the lack of available options in the region. While the simulation results are focused on remote healthcare applications in the Brazilian Amazon, we envision that our approach may also be used for other remote applications, such as distance education, and other similar scenarios.
ContributorsAgarwal, Rachit (Author) / Richa, Andrea (Thesis advisor) / Dasgupta, Partha (Committee member) / Johnson, Thienne (Committee member) / Arizona State University (Publisher)
Created2015
153105-Thumbnail Image.png
Description
Interactive remote e-learning is one of the youngest and most popular methods that is used in today's teaching method. WebRTC, on the other hand, has become the popular concept and method in real time communication. Unlike the old fashioned Adobe Flash, user will communicate directly to each other rather than

Interactive remote e-learning is one of the youngest and most popular methods that is used in today's teaching method. WebRTC, on the other hand, has become the popular concept and method in real time communication. Unlike the old fashioned Adobe Flash, user will communicate directly to each other rather than calling server as the middle man. The world is changing from plug-in to web-browser. However, the WebRTC have not been widely used for school education.

By taking into consideration of the WebRTC solution for data transferring, we propose a new Cloud based interactive multimedia which enables virtual lab learning environment. Three modules were proposed along with an efficient solution for achieving optimized network bandwidth. The One-to-Many communication was introduced in the video conferencing and scalability was tested for the application. The key technical contribution is to establish a sufficient system that designed to utilize the WebRTC in its best way in educational world in the Vlab platform and reduces the tool cost and improves online learning experience.
ContributorsLi, Qingyun (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2014