This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

157543-Thumbnail Image.png
Description
With the development of modern technological infrastructures, such as social networks or the Internet of Things (IoT), data is being generated at a speed that is never before seen. Analyzing the content of this data helps us further understand underlying patterns and discover relationships among different subsets of data, enabling

With the development of modern technological infrastructures, such as social networks or the Internet of Things (IoT), data is being generated at a speed that is never before seen. Analyzing the content of this data helps us further understand underlying patterns and discover relationships among different subsets of data, enabling intelligent decision making. In this thesis, I first introduce the Low-rank, Win-dowed, Incremental Singular Value Decomposition (SVD) framework to inclemently maintain SVD factors over streaming data. Then, I present the Group Incremental Non-Negative Matrix Factorization framework to leverage redundancies in the data to speed up incremental processing. They primarily tackle the challenges of using factorization models in the scenarios with streaming textual data. In order to tackle the challenges in improving the effectiveness and efficiency of generative models in this streaming environment, I introduce the Incremental Dynamic Multiscale Topic Model framework, which identifies multi-scale patterns and their evolutions within streaming datasets. While the latent factor models assume the linear independence in the latent factors, the generative models assume the observation is generated from a set of latent variables with various distributions. Furthermore, some models may not be accessible or their underlying structures are too complex to understand, such as simulation ensembles, where there may be thousands of parameters with a huge parameter space, the only way to learn information from it is to execute real simulations. When performing knowledge discovery and decision making through data- and model-driven simulation ensembles, it is expensive to operate these ensembles continuously at large scale, due to the high computational. Consequently, given a relatively small simulation budget, it is desirable to identify a sparse ensemble that includes the most informative simulations, while still permitting effective exploration of the input parameter space. Therefore, I present Complexity-Guided Parameter Space Sampling framework, which is an intelligent, top-down sampling scheme to select the most salient simulation parameters to execute, given a limited computational budget. Moreover, I also present a Pivot-Guided Parameter Space Sampling framework, which incrementally maintains a diverse ensemble of models of the simulation ensemble space and uses a pivot guided mechanism for future sample selection.
ContributorsChen, Xilun (Author) / Candan, K. Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Pedrielli, Giulia (Committee member) / Sapino, Maria Luisa (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2019
155339-Thumbnail Image.png
Description
The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations.

The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence.
ContributorsDemakethepalli Venkateswara, Hemanth (Author) / Panchanathan, Sethuraman (Thesis advisor) / Li, Baoxin (Committee member) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Chakraborty, Shayok (Committee member) / Arizona State University (Publisher)
Created2017