This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 36
Filtering by

Clear all filters

156291-Thumbnail Image.png
Description
Research literature was reviewed to find recommended tools and technologies for operating Unmanned Aerial Systems (UAS) fleets in an urban environment. However, restrictive legislation prohibits fully autonomous flight without an operator. Existing literature covers considerations for operating UAS fleets in a controlled environment, with an emphasis on the effect different

Research literature was reviewed to find recommended tools and technologies for operating Unmanned Aerial Systems (UAS) fleets in an urban environment. However, restrictive legislation prohibits fully autonomous flight without an operator. Existing literature covers considerations for operating UAS fleets in a controlled environment, with an emphasis on the effect different networking approaches have on the topology of the UAS network. The primary network topology used to implement UAS communications is 802.11 protocols, which can transmit telemetry and a video stream using off the shelf hardware. Other implementations use low-frequency radios for long distance communication, or higher latency 4G LTE modems to access existing network infrastructure. However, a gap remains testing different network topologies outside of a controlled environment.

With the correct permits in place, further research can explore how different UAS network topologies behave in an urban environment when implemented with off the shelf UAS hardware. In addition to testing different network topologies, this thesis covers the implementation of building a secure, scalable system using modern cloud computation tools and services capable of supporting a variable number of UAS. The system also supports the end-to-end simulation of the system considering factors such as battery life and realistic UAS kinematics. The implementation of the system leads to new findings needed to deploy UAS fleets in urban environments.
ContributorsD'Souza, Daniel (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berman, Spring (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2018
156560-Thumbnail Image.png
Description
This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are

This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are designed such that the output trajectories of all the nonlinear models are guaranteed to be distinguishable from each other under any realization of uncertainties in the initial condition, model discrepancies or noise. I propose a two-step approach. First, using an optimization-based approach, we over-approximate nonlinear dynamics by uncertain affine models, as abstractions that preserve all its system behaviors such that any discrimination guarantees for the affine abstraction also hold for the original nonlinear system. Then, I propose a novel solution in the form of a mixed-integer linear program (MILP) to the active model discrimination problem for uncertain affine models, which includes the affine abstraction and thus, the nonlinear models. Finally, I demonstrate the effectiveness of our approach for identifying the intention of other vehicles in a highway lane changing scenario. For the abstraction, I explore two approaches. In the first approach, I construct the bounding planes using a Mixed-Integer Nonlinear Problem (MINLP) formulation of the given system with appropriately designed constraints. For the second approach, I solve a linear programming (LP) problem that over-approximates the nonlinear function at only the grid points of a mesh with a given resolution and then accounting for the entire domain via an appropriate correction term. To achieve a desired approximation accuracy, we also iteratively subdivide the domain into subregions. This method applies to nonlinear functions with different degrees of smoothness, including Lipschitz continuous functions, and improves on existing approaches by enabling the use of tighter bounds. Finally, we compare the effectiveness of this approach with the existing optimization-based methods in simulation and illustrate its applicability for estimator design.
ContributorsSingh, Kanishka Raj (Author) / Yong, Sze Zheng (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2018
156573-Thumbnail Image.png
Description
In this thesis, different H∞ observers for time-delay systems are implemented and

their performances are compared. Equations that can be used to calculate observer gains are mentioned. Different methods that can be used to implement observers for time-delay systems are illustrated. Various stable and unstable systems are used and H∞ bounds

In this thesis, different H∞ observers for time-delay systems are implemented and

their performances are compared. Equations that can be used to calculate observer gains are mentioned. Different methods that can be used to implement observers for time-delay systems are illustrated. Various stable and unstable systems are used and H∞ bounds are calculated using these observer designing methods. Delays are assumed to be known constants for all systems. H∞ gains are calculated numerically using disturbance signals and performances of observers are compared.

The primary goal of this thesis is to implement the observer for Time Delay Systems designed using SOS and compare its performance with existing H∞ optimal observers. These observers are more general than other observers for time-delay systems as they make corrections to the delayed state as well along with the present state. The observer dynamics can be represented by an ODE coupled with a PDE. Results shown in this thesis show that this type of observers performs better than other H∞ observers. Sub-optimal observer-based state feedback system is also generated and simulated using the SOS observer. The simulation results show that the closed loop system converges very quickly, and the observer can be used to design full state-feedback closed loop system.
ContributorsTalati, Rushabh Vikram (Author) / Peet, Matthew (Thesis advisor) / Berman, Spring (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2018
153731-Thumbnail Image.png
Description
Interest in Micro Aerial Vehicle (MAV) research has surged over the past decade. MAVs offer new capabilities for intelligence gathering, reconnaissance, site mapping, communications, search and rescue, etc. This thesis discusses key modeling and control aspects of flapping wing MAVs in hover. A three degree of freedom nonlinear model is

Interest in Micro Aerial Vehicle (MAV) research has surged over the past decade. MAVs offer new capabilities for intelligence gathering, reconnaissance, site mapping, communications, search and rescue, etc. This thesis discusses key modeling and control aspects of flapping wing MAVs in hover. A three degree of freedom nonlinear model is used to describe the flapping wing vehicle. Averaging theory is used to obtain a nonlinear average model. The equilibrium of this model is then analyzed. A linear model is then obtained to describe the vehicle near hover. LQR is used to as the main control system design methodology. It is used, together with a nonlinear parameter optimization algorithm, to design a family multivariable control system for the MAV. Critical performance trade-offs are illuminated. Properties at both the plant output and input are examined. Very specific rules of thumb are given for control system design. The conservatism of the rules are also discussed. Issues addressed include

What should the control system bandwidth be vis--vis the flapping frequency (so that averaging the nonlinear system is valid)?

When is first order averaging sufficient? When is higher order averaging necessary?

When can wing mass be neglected and when does wing mass become critical to model?

This includes how and when the rules given can be tightened; i.e. made less conservative.
ContributorsBiswal, Shiba (Author) / Rodriguez, Armando (Thesis advisor) / Mignolet, Marc (Thesis advisor) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2015
154699-Thumbnail Image.png
Description
Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from

Unmanned aerial vehicles have received increased attention in the last decade due to their versatility, as well as the availability of inexpensive sensors (e.g. GPS, IMU) for their navigation and control. Multirotor vehicles, specifically quadrotors, have formed a fast growing field in robotics, with the range of applications spanning from surveil- lance and reconnaissance to agriculture and large area mapping. Although in most applications single quadrotors are used, there is an increasing interest in architectures controlling multiple quadrotors executing a collaborative task. This thesis introduces a new concept of control involving more than one quadrotors, according to which two quadrotors can be physically coupled in mid-flight. This concept equips the quadro- tors with new capabilities, e.g. increased payload or pursuit and capturing of other quadrotors. A comprehensive simulation of the approach is built to simulate coupled quadrotors. The dynamics and modeling of the coupled system is presented together with a discussion regarding the coupling mechanism, impact modeling and additional considerations that have been investigated. Simulation results are presented for cases of static coupling as well as enemy quadrotor pursuit and capture, together with an analysis of control methodology and gain tuning. Practical implementations are introduced as results show the feasibility of this design.
ContributorsLarsson, Daniel (Author) / Artemiadis, Panagiotis (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2016
154785-Thumbnail Image.png
Description
A computational framework based on convex optimization is presented for stability analysis of systems described by Partial Differential Equations (PDEs). Specifically, two forms of linear PDEs with spatially distributed polynomial coefficients are considered.

The first class includes linear coupled PDEs with one spatial variable. Parabolic, elliptic or hyperbolic PDEs with

A computational framework based on convex optimization is presented for stability analysis of systems described by Partial Differential Equations (PDEs). Specifically, two forms of linear PDEs with spatially distributed polynomial coefficients are considered.

The first class includes linear coupled PDEs with one spatial variable. Parabolic, elliptic or hyperbolic PDEs with Dirichlet, Neumann, Robin or mixed boundary conditions can be reformulated in order to be used by the framework. As an example, the reformulation is presented for systems governed by Schr¨odinger equation, parabolic type, relativistic heat conduction PDE and acoustic wave equation, hyperbolic types. The second form of PDEs of interest are scalar-valued with two spatial variables. An extra spatial variable allows consideration of problems such as local stability of fluid flows in channels and dynamics of population over two dimensional domains.

The approach does not involve discretization and is based on using Sum-of-Squares (SOS) polynomials and positive semi-definite matrices to parameterize operators which are positive on function spaces. Applying the parameterization to construct Lyapunov functionals with negative derivatives allows to express stability conditions as a set of LinearMatrix Inequalities (LMIs). The MATLAB package SOSTOOLS was used to construct the LMIs. The resultant LMIs then can be solved using existent Semi-Definite Programming (SDP) solvers such as SeDuMi or MOSEK. Moreover, the proposed approach allows to calculate bounds on the rate of decay of the solution norm.

The methodology is tested using several numerical examples and compared with the results obtained from simulation using standard methods of numerical discretization and analytic solutions.
ContributorsMeyer, Evgeny (Author) / Peet, Matthew (Thesis advisor) / Berman, Spring (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2016
Description
To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how

To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform

that can be used for conducting FAME research.

A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities.

The augmented vehicle (FreeSLAM Robot) costs less than $500 but offers the capability

of commercially available vehicles costing over $2000.

All demonstrations presented involve rear-wheel drive FreeSLAM robot. The following

summarizes the key hardware demonstrations presented and analyzed:

(1)Cruise (v, ) control along a line,

(2) Cruise (v, ) control along a curve,

(3) Planar (x, y) Cartesian Stabilization for rear wheel drive vehicle,

(4) Finish the track with camera pan tilt structure in minimum time,

(5) Finish the track without camera pan tilt structure in minimum time,

(6) Vision based tracking performance with different cruise speed vx,

(7) Vision based tracking performance with different camera fixed look-ahead distance L,

(8) Vision based tracking performance with different delay Td from vision subsystem,

(9) Manually remote controlled robot to perform indoor SLAM,

(10) Autonomously line guided robot to perform indoor SLAM.

For most cases, hardware data is compared with, and corroborated by, model based

simulation data. In short, the thesis uses low-cost self-designed rear-wheel

drive robot to demonstrate many capabilities that are critical in order to reach the

longer-term FAME goal.
ContributorsLu, Xianglong (Author) / Rodriguez, Armando Antonio (Thesis advisor) / Berman, Spring (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016
155672-Thumbnail Image.png
Description
The greenhouse gases in the atmosphere have reached a highest level due to high number of vehicles. A Fuel Cell Hybrid Electric Vehicle (FCHEV) has zero greenhouse gas emissions compared to conventional ICE vehicles or Hybrid Electric Vehicles and hence is a better alternative. All Electric Vehicle (AEVs) have longer

The greenhouse gases in the atmosphere have reached a highest level due to high number of vehicles. A Fuel Cell Hybrid Electric Vehicle (FCHEV) has zero greenhouse gas emissions compared to conventional ICE vehicles or Hybrid Electric Vehicles and hence is a better alternative. All Electric Vehicle (AEVs) have longer charging time which is unfavorable. A fully charged battery gives less range compared to a FCHEV with a full hydrogen tank. So FCHEV has an advantage of a quick fuel up and more mileage than AEVs. A Proton Electron Membrane Fuel Cell (PEMFC) is the commonly used kind of fuel cell vehicles but it possesses slow current dynamics and hence not suitable to be the sole power source in a vehicle. Therefore, improving the transient power capabilities of fuel cell to satisfy the road load demand is critical.

This research studies integration of Ultra-Capacitor (UC) to FCHEV. The objective is to analyze the effect of integrating UCs on the transient response of FCHEV powertrain. UCs has higher power density which can overcome slow dynamics of fuel cell. A power management strategy utilizing peak power shaving strategy is implemented. The goal is to decrease power load on batteries and operate fuel cell stack in it’s most efficient region. Complete model to simulate the physical behavior of UC-Integrated FCHEV (UC-FCHEV) is developed using Matlab/SIMULINK. The fuel cell polarization curve is utilized to devise operating points of the fuel cell to maintain its operation at most efficient region. Results show reduction of hydrogen consumption in aggressive US06 drive cycle from 0.29 kg per drive cycle to 0.12 kg. The maximum charge/discharge battery current was reduced from 286 amperes to 110 amperes in US06 drive cycle. Results for the FUDS drive cycle show a reduction in fuel consumption from 0.18 kg to 0.05 kg in one drive cycle. This reduction in current increases the life of the battery since its protected from overcurrent. The SOC profile of the battery also shows that the battery is not discharged to its minimum threshold which increasing the health of the battery based on number of charge/discharge cycles.
ContributorsJethani, Puneet V. (Author) / Mayyas, Abdel (Thesis advisor) / Berman, Spring (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2017
155146-Thumbnail Image.png
Description
The advancements in the technology of MEMS fabrication has been phenomenal in recent years. In no mean measure this has been the result of continued demand from the consumer electronics market to make devices smaller and better. MEMS inertial measuring units (IMUs) have found revolutionary applications in a wide array

The advancements in the technology of MEMS fabrication has been phenomenal in recent years. In no mean measure this has been the result of continued demand from the consumer electronics market to make devices smaller and better. MEMS inertial measuring units (IMUs) have found revolutionary applications in a wide array of fields like medical instrumentation, navigation, attitude stabilization and virtual reality. It has to be noted though that for advanced applications of motion tracking, navigation and guidance the cost of the IMUs is still pretty high. This is mainly because the process of calibration and signal processing used to get highly stable results from MEMS IMU is an expensive and time-consuming process. Also to be noted is the inevitability of using external sensors like GPS or camera for aiding the IMU data due to the error propagation in IMU measurements adds to the complexity of the system.

First an efficient technique is proposed to acquire clean and stable data from unaided IMU measurements and then proceed to use that system for tracking human motion. First part of this report details the design and development of the low-cost inertial measuring system ‘yIMU’. This thesis intends to bring together seemingly independent techniques that were highly application specific into one monolithic algorithm that is computationally efficient for generating reliable orientation estimates. Second part, systematically deals with development of a tracking routine for human limb movements. The validity of the system has then been verified.

The central idea is that in most cases the use of expensive MEMS IMUs is not warranted if robust smart algorithms can be deployed to gather data at a fraction of the cost. A low-cost prototype has been developed comparable to tactical grade performance for under $15 hardware. In order to further the practicability of this device we have applied it to human motion tracking with excellent results. The commerciality of device has hence been thoroughly established.
ContributorsShetty, Yatiraj K (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2016
155159-Thumbnail Image.png
Description
The environmental impact of the fossil fuels has increased tremendously in the last decade. This impact is one of the most contributing factors of global warming. This research aims to reduce the amount of fuel consumed by vehicles through optimizing the control scheme for the future route information. Taking advantage

The environmental impact of the fossil fuels has increased tremendously in the last decade. This impact is one of the most contributing factors of global warming. This research aims to reduce the amount of fuel consumed by vehicles through optimizing the control scheme for the future route information. Taking advantage of more degrees of freedom available within PHEV, HEV, and FCHEV “energy management” allows more margin to maximize efficiency in the propulsion systems. The application focuses on reducing the energy consumption in vehicles by acquiring information about the road grade. Road elevations are obtained by use of Geographic Information System (GIS) maps to optimize the controller. The optimization is then reflected on the powertrain of the vehicle.The approach uses a Model Predictive Control (MPC) algorithm that allows the energy management strategy to leverage road grade to prepare the vehicle for minimizing energy consumption during an uphill and potential energy harvesting during a downhill. The control algorithm will predict future energy/power requirements of the vehicle and optimize the performance by instructing the power split between the internal combustion engine (ICE) and the electric-drive system. Allowing for more efficient operation and higher performance of the PHEV, and HEV. Implementation of different strategies, such as MPC and Dynamic Programming (DP), is considered for optimizing energy management systems. These strategies are utilized to have a low processing time. This approach allows the optimization to be integrated with ADAS applications, using current technology for implementable real time applications.

The Thesis presents multiple control strategies designed, implemented, and tested using real-world road elevation data from three different routes. Initial simulation based results show significant energy savings. The savings range between 11.84% and 25.5% for both Rule Based (RB) and DP strategies on the real world tested routes. Future work will take advantage of vehicle connectivity and ADAS systems to utilize Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), traffic information, and sensor fusion to further optimize the PHEV and HEV toward more energy efficient operation.
ContributorsAlzorgan, Mohammad (Author) / Mayyas, Abdel Ra’ouf (Thesis advisor) / Berman, Spring (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2016