This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151747-Thumbnail Image.png
Description
Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt

Heating of asphalt during production and construction causes the volatilization and oxidation of binders used in mixes. Volatilization and oxidation causes degradation of asphalt pavements by increasing the stiffness of the binders, increasing susceptibility to cracking and negatively affecting the functional and structural performance of the pavements. Degradation of asphalt binders by volatilization and oxidation due to high production temperature occur during early stages of pavement life and are known as Short Term Aging (STA). Elevated temperatures and increased exposure time to elevated temperatures causes increased STA of asphalt. The objective of this research was to investigate how elevated mixing temperatures and exposure time to elevated temperatures affect aging and stiffening of binders, thus influencing properties of the asphalt mixtures. The study was conducted in two stages. The first stage evaluated STA effect of asphalt binders. It involved aging two Performance Graded (PG) virgin asphalt binders, PG 76-16 and PG 64-22 at two different temperatures and durations, then measuring their viscosities. The second stage involved evaluating the effects of elevated STA temperature and time on properties of the asphalt mixtures. It involved STA of asphalt mixtures produced in the laboratory with the PG 64-22 binder at mixing temperatures elevated 25OF above standard practice; STA times at 2 and 4 hours longer than standard practices, and then compacted in a gyratory compactor. Dynamic modulus (E*) and Indirect Tensile Strength (IDT) were measured for the aged mixtures for each temperature and duration to determine the effect of different aging times and temperatures on the stiffness and fatigue properties of the aged asphalt mixtures. The binder test results showed that in all cases, there was increased viscosity. The results showed the highest increase in viscosity resulted from increased aging time. The results also indicated that PG 64-22 was more susceptible to elevated STA temperature and extended time than the PG 76-16 binders. The asphalt mixture test results confirmed the expected outcome that increasing the STA and mixing temperature by 25oF alters the stiffness of mixtures. Significant change in the dynamic modulus mostly occurred at four hour increase in STA time regardless of temperature.
ContributorsLolly, Rubben (Author) / Kaloush, Kamil (Thesis advisor) / Bearup, Wylie (Committee member) / Zapata, Claudia (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
193624-Thumbnail Image.png
Description
Innovative project delivery methods and project management systems have advanced the world of construction engineering and management, yet the benefits of their applications remain not wholly accomplished without accompanying them with the suitable methods of implementation. As integrated delivery methods have arisen from the need for faster project delivery with

Innovative project delivery methods and project management systems have advanced the world of construction engineering and management, yet the benefits of their applications remain not wholly accomplished without accompanying them with the suitable methods of implementation. As integrated delivery methods have arisen from the need for faster project delivery with early teams’ involvement, their benefits are not attained unless they are executed by the most qualified contracting firms for the job and administered following collaborative approaches. More holistically, integrated project management systems support meeting project guidelines while enforcing the social role played by individuals and teams in addressing challenges that influence their technical performance. Thus, the author was one of the 41 team members that developed an innovative IPM framework which is the Integrated Project/Program Management Maturity and Environment Total risk Rating known as IP2M METRR that helps them review their project team environment and levels of system maturity. Like the integrated delivery methods, an IPM framework is not expected to solve challenges on its own unless supported with guidance for practitioners to efficiently implement the framework. Thus, in this dissertation the author aims to address the challenges by studying the implementation of innovative methods for integrated delivery and integrated management in large government-owned engineering construction projects. The objective is to guide the implementation of (1) design-build (D-B) and construction manager-general contractor (CM-GC) methods in the contractor procurement phase and post-award contract administration phase; and (2) earned value management system (integrated project management application) through a paradigm shift in its assessment, using the IP2M METRR, and focusing on the novel sociotechnical aspect. The author studied data from 128 government-owned projects with total worth of about $46.7 U.S. billion, 11 experts, and 215 practitioners; and used mixed-methods research and industry engaging research techniques, including remote research charrettes which the author supported its development and testing and reported on in this dissertation.The contributions of this dissertation include: (1) identifying best practices for D-B and CM-GC contractor procurement, (2) developing D-B and CM-GC contract administration tool selection framework, (3) gauging lessons learned on IP2M METRR application, (4) identifying issues and recommendations in IPM application implementation, (5) validating IP2M METRR framework, and (6) developing and testing industry-engaging research approach.
ContributorsSanboskani, Hala (Author) / El Asmar, Mounir (Thesis advisor) / Grau, David (Thesis advisor) / Gibson, Jr., George E. (Committee member) / Bearup, Wylie (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2024