This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

152257-Thumbnail Image.png
Description
Today, more and more substations are created and reconstructed to satisfy the growing electricity demands for both industry and residence. It is always a big concern that the designed substation must guarantee the safety of persons who are in the area of the substation. As a result, the safety metrics

Today, more and more substations are created and reconstructed to satisfy the growing electricity demands for both industry and residence. It is always a big concern that the designed substation must guarantee the safety of persons who are in the area of the substation. As a result, the safety metrics (touch voltage, step voltage and grounding resistance), which should be considered at worst case, are supposed to be under the allowable values. To improve the accuracy of calculating safety metrics, at first, it is necessary to have a relatively accurate soil model instead of uniform soil model. Hence, the two-layer soil model is employed in this thesis. The new approximate finite equations with soil parameters (upper-layer resistivity, lower-layer resistivity and upper-layer thickness) are used, which are developed based on traditional infinite expression. The weighted- least-squares regression with new bad data detection method (adaptive weighted function) is applied to fit the measurement data from the Wenner-method. At the end, a developed error analysis method is used to obtain the error (variance) of each parameter. Once the soil parameters are obtained, it is possible to use a developed complex images method to calculate the mutual (self) resistance, which is the induced voltage of a conductor/rod by unit current form another conductor/rod. The basis of the calculation is Green's function between two point current sources, thus, it can be expanded to either the functions between point and line current sources, or the functions between line and line current sources. Finally, the grounding system optimization is implemented with developed three-step optimization strategy using MATLAB solvers. The first step is using "fmincon" solver to optimize the cost function with differentiable constraint equations from IEEE standard. The result of the first step is set as the initial values to the second step, which is using "patternsearch" solver, thus, the non-differentiable and more accurate constraint calculation can be employed. The final step is a backup step using "ga" solver, which is more robust but lager time cost.
ContributorsWu, Xuan (Author) / Tylavsky, Daniel (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
153289-Thumbnail Image.png
Description
Substation ground system insures safety of personnel, which deserves considerable attentions. Basic substation safety requirement quantities include ground grid resistance, mesh touch potential and step potential, moreover, optimal design of a substation ground system should include both safety concerns and ground grid construction cost. In the purpose of optimal designing

Substation ground system insures safety of personnel, which deserves considerable attentions. Basic substation safety requirement quantities include ground grid resistance, mesh touch potential and step potential, moreover, optimal design of a substation ground system should include both safety concerns and ground grid construction cost. In the purpose of optimal designing the ground grid in the accurate and efficient way, an application package coded in MATLAB is developed and its core algorithm and main features are introduced in this work.

To ensure accuracy and personnel safety, a two-layer soil model is applied instead of the uniform soil model in this research. Some soil model parameters are needed for the two-layer soil model, namely upper-layer resistivity, lower-layer resistivity and upper-layer thickness. Since the ground grid safety requirement is considered under the earth fault, the value of fault current and fault duration time are also needed.

After all these parameters are obtained, a Resistance Matrix method is applied to calculate the mutual and self resistance between conductor segments on both the horizontal and vertical direction. By using a matrix equation of the relationship of mutual and self resistance and unit current of the conductor segments, the ground grid rise can be calculated. Green's functions are applied to calculate the earth potential at a certain point produced by horizontal or vertical line of current. Furthermore, the three basic ground grid safety requirement quantities: the mesh touch potential in the worst case point can be obtained from the earth potential and ground grid rise; the step potential can be obtained from two points' earth potential difference; the grid resistance can be obtained from ground grid rise and fault current.

Finally, in order to achieve ground grid optimization problem more accurate and efficient, which includes the number of meshes in the horizontal grid and the number of vertical rods, a novel two-step hybrid genetic algorithm-pattern search (GA-PS) optimization method is developed. The Genetic Algorithm (GA) is used first to search for an approximate starting point, which is used by the Pattern Search (PS) algorithm to find the final optimal result. This developed application provides an optimal grid design meeting all safety constraints. In the cause of the accuracy of the application, the touch potential, step potential, ground potential rise and grid resistance are compared with these produced by the industry standard application WinIGS and some theoretical ground grid model.

In summary, the developed application can solve the ground grid optimization problem with the accurate ground grid modeling method and a hybrid two-step optimization method.
ContributorsZhang, Qianzhi (Author) / Tylavsky, Daniel (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
150298-Thumbnail Image.png
Description
Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities

Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an external area are first demarcated. Then the coherent generators in the external area are aggregated and replaced by equivalenced models, followed by network reduction and load aggregation. In this process, an improperly defined retained area can result in detrimental impacts on the effectiveness of the equivalents in preserving the dynamic characteristics of the original unreduced system. In this dissertation, a comprehensive approach has been proposed to determine an appropriate retained area boundary by including the critical generators in the external area that are tightly coupled with the initial retained area. Further-more, a systematic approach has also been investigated to efficiently predict the variation in generator slow coherency behavior when the system operating condition is subject to change. Based on this determination, the critical generators in the external area that are tightly coherent with the generators in the initial retained area are retained, resulting in a new retained area boundary. Finally, a novel hybrid dynamic equivalent, consisting of both a coherency-based equivalent and an artificial neural network (ANN)-based equivalent, has been proposed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the retained area boundary buses, and it is designed to compensate for the discrepancy between the full system and the conventional coherency-based equivalent. The approaches developed have been validated on a large portion of the Western Electricity Coordinating Council (WECC) system and on a test case including a significant portion of the eastern interconnection.
ContributorsMa, Feng (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
151213-Thumbnail Image.png
Description
The reliability assessment of future distribution networks is an important issue in power engineering for both utilities and customers. This is due to the increasing demand for more reliable service with less interruption frequency and duration. This research consists of two main parts related to the evaluation of the future

The reliability assessment of future distribution networks is an important issue in power engineering for both utilities and customers. This is due to the increasing demand for more reliable service with less interruption frequency and duration. This research consists of two main parts related to the evaluation of the future distribution system reliability. An innovative algorithm named the encoded Markov cut set (EMCS) is proposed to evaluate the reliability of the networked power distribution system. The proposed algorithm is based on the identification of circuit minimal tie sets using the concept of Petri nets. Prime number encoding and unique prime factorization are then utilized to add more flexibility in communicating between the systems states, and to classify the states as tie sets, cut sets, or minimal cut sets. Different reduction and truncation techniques are proposed to reduce the size of the state space. The Markov model is used to compute the availability, mean time to failure, and failure frequency of the network. A well-known Test Bed is used to illustrate the analysis (the Roy Billinton test system (RBTS)), and different load and system reliability indices are calculated. The method shown is algorithmic and appears suitable for off-line comparison of alternative secondary distribution system designs on the basis of their reliability. The second part assesses the impact of the conventional and renewable distributed generation (DG) on the reliability of the future distribution system. This takes into account the variability of the power output of the renewable DG, such as wind and solar DGs, and the chronological nature of the load demand. The stochastic nature of the renewable resources and its influence on the reliability of the system are modeled and studied by computing the adequacy transition rate. Then, an integrated Markov model that incorporates the DG adequacy transition rate, DG mechanical failure, and starting and switching probability is proposed and utilized to give accurate results for the DG reliability impact. The main focus in this research is the conventional, solar, and wind DG units. However, the technique used appears to be applicable to any renewable energy source.
ContributorsAlmuhaini, Mohammad (Author) / Heydt, Gerald (Thesis advisor) / Ayyanar, Raja (Committee member) / Gel, Esma (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
161839-Thumbnail Image.png
Description
The power-flow problem has been solved using the Newton-Raphson and Gauss-Seidel methods. Recently the holomorphic embedding method (HEM), a recursive (non-iterative) method applied to solving nonlinear algebraic systems, was applied to the power-flow problem. HEM has been claimed to have superior properties when compared to the Newton-Raphson and other iterative

The power-flow problem has been solved using the Newton-Raphson and Gauss-Seidel methods. Recently the holomorphic embedding method (HEM), a recursive (non-iterative) method applied to solving nonlinear algebraic systems, was applied to the power-flow problem. HEM has been claimed to have superior properties when compared to the Newton-Raphson and other iterative methods in the sense that if the power-flow solution exists, it is guaranteed that a properly configured HEM can find the high voltage solution and, if no solution exists, HEM will signal that unequivocally. Provided a solution exists, convergence of HEM in the extremal domain is claimed to be theoretically guaranteed by Stahl’s convergence-in-capacity theorem, another advantage over other iterative nonlinear solver.In this work it is shown that the poles and zeros of the rational function from fitting the local PMU measurements can be used theoretically to predict the voltage-collapse point. Different numerical methods were applied to improve prediction accuracy when measurement noise is present. It is also shown in this work that the dc optimal power flow (DCOPF) problem can be formulated as a properly embedded set of algebraic equations. Consequently, HEM may also be used to advantage on the DCOPF problem. For the systems examined, the HEM-based interior-point approach can be used to solve the DCOPF problem. While the ultimate goal of this line of research is to solve the ac OPF; tackled in this work, is a precursor and well-known problem with Padé approximants: spurious poles that are generated when calculating the Padé approximant may, at times, prevent convergence within the functions domain. A new method for calculating the Padé approximant, called the Padé Matrix Pencil Method was developed to solve the spurious pole problem. The Padé Matrix Pencil Method can achieve accuracy equal to that of the so-called direct method for calculating Padé approximants of the voltage-functions tested while both using a reduced order approximant and eliminating any spurious poles within the portion of the function’s domain of interest: the real axis of the complex plane up to the saddle-node bifurcation point.
ContributorsLi, Songyan (Author) / Tylavsky, Daniel (Thesis advisor) / Ayyanar, Raja (Committee member) / Weng, Yang (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2021