This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171894-Thumbnail Image.png
Description
Power system robustness against high impact low probability events is becoming a major concern. About 90% of US power outages reported in the last three decades are due to Hurricanes and tropical storms. Various works of literature are focused on modelling the resilience framework against hurricanes. To depict distinct phases

Power system robustness against high impact low probability events is becoming a major concern. About 90% of US power outages reported in the last three decades are due to Hurricanes and tropical storms. Various works of literature are focused on modelling the resilience framework against hurricanes. To depict distinct phases of a system response during these disturbances, an aggregated trapezoid model is derived from the conventional trapezoid model and proposed in this work. The model is analytically investigated for transmission system performance, based on which resiliency metrics are developed for the same.A probabilistic-based Monte Carlo Simulations (MCS) approach has been proposed in this work to incorporate the stochastic nature of the power system and hurricane uncertainty. Furthermore, the system's resilience to hurricanes is evaluated on the modified reliability test system (RTS), which is provided in this work, by performing steady-state and dynamic security assessment incorporating protection modelling and corrective action schemes using the Siemens Power System Simulator for Engineering (PSS®E) software. Based on the results of steady-state (both deterministic and stochastic approach) and dynamic (both deterministic and stochastic approach) analysis, resilience metrics are quantified. Finally, this work highlights the interdependency of operational and infrastructure resilience as they cannot be considered discrete characteristics of the system. The objective of this work is to incorporate dynamic analysis and stochasticity in the resilience evaluation for a wind penetrated power system.
ContributorsVijay Iswaran, Giritharan (Author) / Hedman, Mojdeh (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2022
191497-Thumbnail Image.png
Description
In recent years, there has been an increasing need for effective voltage controls in power systems due to the growing complexity and dynamic nature of practical power grid operations. Deep reinforcement learning (DRL) techniques now have been widely explored and applied to various electric power operation analyses under different control

In recent years, there has been an increasing need for effective voltage controls in power systems due to the growing complexity and dynamic nature of practical power grid operations. Deep reinforcement learning (DRL) techniques now have been widely explored and applied to various electric power operation analyses under different control structures. With massive data available from phasor measurement units (PMU), it is possible to explore the application of DRL to ensure that electricity is delivered reliably.For steady-state power system voltage regulation and control, this study proposed a novel deep reinforcement learning (DRL) based method to provide voltage control that can quickly remedy voltage violations under different operating conditions. Multiple types of devices, adjustable voltage ratio (AVR) and switched shunts, are considered as controlled devices. A modified deep deterministic policy gradient (DDPG) algorithm is applied to accommodate both the continuous and discrete control action spaces of different devices. A case study conducted on the WECC 240-Bus system validates the effectiveness of the proposed method. System dynamic stability and performance after serious disturbances using DRL are further discussed in this study. A real-time voltage control method is proposed based on DRL, which continuously regulates the excitation system in response to system disturbances. Dynamic performance is considered by incorporating historical voltage data, voltage rate of change, voltage deviation, and regulation amount. A versatile transmission-level power system dynamic training and simulation platform is developed by integrating the simulation software PSS/E and a user-written DRL agent code developed in Python. The platform developed facilitates the training and testing of various power system algorithms and power grids in dynamic simulations with all the modeling capabilities available within PSS/E. The efficacy of the proposed method is evaluated based on the developed platform. To enhance the controller's resilience in addressing communication failures, a dynamic voltage control method employing the Multi-agent DDPG algorithm is proposed. The algorithm follows the principle of centralized training and decentralized execution. Each agent has independent actor neural networks and critic neural networks. Simulation outcomes underscore the method’s efficacy, showcasing its capability in providing voltage support and handling communication failures among agents.
ContributorsWang, Yuling (Author) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Pal, Anamitra (Committee member) / Hedman, Mojdeh (Committee member) / Arizona State University (Publisher)
Created2024